PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we have developed a new 4-D dynamical system with hyperchaos and hidden attractor. First, by introducing a feedback input control into the 3-D Ma chaos system (2004), we obtain a new 4-D hyperchaos system with no equilibrium point. Thus, we derive a new hyperchaos system with hidden attractor. We carry out an extensive bifurcation analysis of the new hyperchaos model with respect to the three parameters. We also carry out probability density distribution analysis of the new hyperchaotic system. Interestingly, the new nonlinear hyperchaos system exhibits multistability with coexisting attractors. Next, we discuss global hyperchaos self-synchronization for the new hyperchaos system via Integral Sliding Mode Control (ISMC). As an engineering application, we realize the new 4-D hyperchaos system with an electronic circuit via MultiSim. The outputs of the MultiSim hyperchaos circuit show good match with the numerical MATLAB plots of the hyperchaos model. We also analyze the power spectral density (PSD) of the hyperchaos of the state variables using MultiSim.
Rocznik
Strony
99--128
Opis fizyczny
Bibliogr. 40 poz., rys., wykr., wzory
Twórcy
  • School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
autor
  • School of Physics and Electronics, Central South University, Changsha, 410083, China
autor
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Bibliografia
  • [1] F. F. Franco, E. Rempel, and P. R. Munoz: Crisis and hyperchaos in a simplified model of magnetoconvection, Physica D: Nonlinear Phenomena, 406 (2020), Article ID 132417.
  • [2] M. Stender, M. Jahn, N. Hoffman, and J. Wallaschek: Hyperchaos coexisting with periodic orbits in a frictional oscillator, Journal of Sound and Vibration, 472 (2020), Article ID 115203.
  • [3] A. Y. Shvets and V. A. Sirenko: Scenarios of transitions to hyperchaos in nonideal oscillating systems, Journal of Mathematical Sciences, 243(2) (2019), 338-346.
  • [4] J. Singha and N. Gupte: Chimera states in globally coupled sine circle map lattices: Spatiotemporal intermittency and hyperchaos, Physics Letters, Section A: General, Atomic and Solid State Physics, 384(11) (2020), Article ID 126225.
  • [5] C. Xu, J. Sun, and C. Wang: An image encryption algorithm based on random walk and hyperchaotic systems, International Journal of Bifurcation and Chaos, 30(4) (2020), Article ID 20500601.
  • [6] P. T. Akkasaligar and S. Biradar: Selective medical image encryption using DNA cryptography, Information Security Journal, 29(2) (2020), 91-101.
  • [7] S. Cheng, L. Wang, N. Ao, and Q. Han: A selective video encryption scheme based on coding characteristics, Symmetry, 12(3) (2020), Article ID 332.
  • [8] Y. Wan, S. Gu, and B. Du: A new image encryption algorithm based on composite chaos and hyperchaos combined with DNA coding, Entropy, 22(2) (2020), Article ID 171.
  • [9] C. Zhong and M. S. Pan: Encryption algorithm based on scrambling substitution of new hyperchaotic Chen system, Chinese Journal of Liquid Crystals and Displays, 35(1) (2020), 91–97.
  • [10] J. X. Cui, G. D. Li, L. L. Wang, and C. Ma: Colour image encryption algorithm based on hyperchaos and DNA sequences, International Journal of Information and Communication Technology, 16(3) (2020), 230–244.
  • [11] H. Lin and C. Wang: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network, Applied Mathematics and Computation, 369 (2020), Article ID 124840.
  • [12] H. Lin, C. Wang, and Y. Tan: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation, Nonlinear Dynamics, 99(3) (2020), 2369–2386.
  • [13] F. Li, C. Tai, H. Bao, J. Luo, and B. Bao: Hyperchaos, quasi-period and coexisting behaviors in second-order-memristor-based jerk circuit, European Physical Journal: Special Topics, 229(6-7) (2020), 1045–1058.
  • [14] B. A. Mezatio, M. Motchongom Tingue, R. Kengne, A. Tchagna Kouanou, T. Fozin Fonzin, and R. Tchitnga: Complex dynamics from a novel memristive 6D hyperchaotic autonomous system, International Journal of Dynamics and Control, 8(1) (2020), 70–90.
  • [15] S. Wang, S. He, K. Rajagopal, A. Karthikeyan and K. Sun: Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation, European Physical Journal: Special Topics, 229(6-7) (2020), 929–942.
  • [16] B. Xin, W. Peng, Y. Kwon, and Y. Liu: Modeling, discretization, and hyperchaos detection of conformable derivative approach to a financial system with market confidence and ethics risk, Advances in Difference Equations, 2019(1) (2019), Article ID 138.
  • [17] N. Stankevich, A. Kuznetsov, E. Popova and E. Seleznev: Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator, Nonlinear Dynamics, 97(4) (2019), 2355–2370.
  • [18] A. Sambas, S. Vaidyanathan, S. Zhang, Y. Zeng, M. A. Mohamed, and M. Mamat: A new double-wing chaotic system with coexisting attractors and line equilibrium: Bifurcation analysis and electronic circuit simulation, IEEE Access, 7 (2019), 115454–115462.
  • [19] C. Volos, J. O. Maaita, S. Vaidyanathan, V. T. Pham, I. Stouboulos, and I. Kyprianidis: A novel four-dimensional hyperchaotic four-wing system with a saddle-focus equilibrium, IEEE Transactions on Circuits and Systems II: Express Briefs, 64(3) (2016), 339–343.
  • [20] I. Koyuncu, M. Alcin, M. Tuna, I. Pehlivan, M. Varan, and S. Vaidyanathan: Real-time high-speed 5-D hyperchaotic Lorenz system on FPGA, International Journal of Computer Applications in Technology, 61(3) (2019), 152–165.
  • [21] A. Sambas, S. Vaidyanathan, E. Tlelo-Cuautle, S. Zhang, O. Guillen-Fernandez, Sukono, Y. Hidayat, and G. Gundara: A novel chaotic system with two circles of equilibrium points: Multistability, electronic circuit and FPGA realization, Electronics, 8(11) (2019), Article ID 1211.
  • [22] J. H. Ma, B. Ren, and Y. S. Chen: Impulsive control of chaotic attractors in nonlinear chaotic systems, Applied Mathematics and Mechanics, 25(9) (2004), 971–976.
  • [23] S. Vaidyanathan, A. T. Azar, A. Akgul, C. H. Lien, S. Kacar, and U. Cavusoglu: A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control and an application to voice encryption, International Journal of Automation and Control, 13(6) (2019), 644–647.
  • [24] G. Li, Y. Yue, J. Xie, and C. Grebogi: Multistability in a quasiperiodically forced piecewise smooth dynamical system, Communications in Nonlinear Science and Numerical Simulation, 84 (2020), Article ID 105165.
  • [25] R. W. Tapche, Z. T. Njitacke, J. Kengne, and F. B. Pelap: Complex dynamics of a novel 3D autonomous system without linear terms having line of equilibria: coexisting bifurcations and circuit design, Analog Integrated Circuits and Signal Processing, 103(1) (2020), 57–71.
  • [26] S. Vaidyanathan: Output regulation of Arneodo-Coullet chaotic system, Communications in Computer and Information Science, 133 (2011), 98–107.
  • [27] S. Vaidyanathan: Output regulation of the unified chaotic system, Communications in Computer and Information Science, 198 (2011), 1–9.
  • [28] C. K. Volos, V. T. Pham, S. Vaidyanathan, I. M. Kyprianidis, and I. N. Stouboulos: Synchronization phenomena in coupled Colpitts circuits, Journal of Engineering Science and Technology Review, 8(2) (2015), 142-151.
  • [29] S. Vaidyanathan: Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor, International Journal of PharmTech Research, 8(5), (2015), 956–963.
  • [30] S. Vaidyanathan: Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method, International Journal of PharmTech Research, 8(6) (2015), 156–166.
  • [31] S. Vaidyanathan: Hybrid chaos synchronization of 3-cells cellular neural network attractors via adaptive control method, International Journal of PharmTech Research, 8(8) (2015), 61–73.
  • [32] S. Vaidyanathan and A. T. Azar: Takagi-Sugeno fuzzy logic controller for Liu-Chen four-scroll chaotic system, International Journal of Intelligent Engineering Informatics, 4(2) (2016), 135–150.
  • [33] S. Vaidyanathan, C. Volos, and V. T. Pham: Global chaos control of a novel nine-term chaotic system via sliding mode control, Studies in Computational Intelligence, 576 (2015), 571–590.
  • [34] S. Vaidyanathan: Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control, Advances in Intelligent Systems and Computing, 176 (2012), 329–337.
  • [35] S. Vaidyanathan and C. H. Lien: Applications of Sliding Mode Control in Science and Engineering, Belin, Springer, 2017.
  • [36] S. M. Yu and S. S. Qiu: Secure communication system via hyperchaos, Chinese Journal of Radio Science, 16(2) (2001), 266.
  • [37] D. A. Miller, B. Bazuin, D. Kerr, and G. Grassi: Experimental performance of a coherent communication system based on hyperchaos synchronization, Midwest Symposium on Circuits and Systems, 3 (2002), 111516–111519.
  • [38] X. Min, X. Wang, P. Zhou, S. Yu, and H. H. C. Iu: An optimized memristorbased hyperchaotic system with controlled hidden attractors, IEEE Access, 7 (2019), 124641–124646.
  • [39] S. He, K. Sun, and H. Wang: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system, Entropy, 17(12) (2015), 8299–8311.
  • [40] S. He and S. Banerjee: Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system, European Physical Journal: Special Topics, 288 (2019) 195–207.
Uwagi
1. This work was supported by the Natural Science Foundation of China (Nos. 61901530, 11747150), the China Postdoctoral Science Foundation (No. 2019M652791), the Postdoctoral Innovative Talents Support Program (No. BX20180386).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d4f512e-823a-42eb-a163-6f896a765c47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.