PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of simulated axial residual stress and transverse residual stress in welded P92 pipe and plates including plasticity error

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the measurement of residual stresses in P92 welded pipe using the blind hole drilling technique. The post weld heat treatment (PWHT) of a P92 welded pipe was also conducted to study their effect on residual stresses. The P92 pipe weld joints were prepared using gas tungsten arc welding process. The residual stress measurement was carried out using a strain gauge rosette that was associated with the plastic deformation of the material and a stress concentration effect of a multi-point cutting tool. A corrective formulation was developed for calculating the corrected value of residual stresses from the experimentally obtained strain value. The Strain gauge response was estimated experimentally using tensile testing for uniaxial loading while a finite element analysis was performed for biaxial loading. A gas tungsten arc welds joint was prepared for a conventional V-groove and a narrow groove design.
Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Sam Higginbottom University of Agriculture, Technology And Sciences Allahabad, 211007, U.P, India
  • Department of Mechanical Engineering, Sam Higginbottom University of Agriculture, Technology And Sciences Allahabad, 211007, U.P, India
Bibliografia
  • 1. M. M. Mahapatra, G. L. Datta, B. Pradhan, and N. R. Mandal, “Modelling the effects of constraints and single axis welding process parameters on angular distortions in one-sided fillet welds,” Proc. IMechE Part B J. Eng. Manuf., vol. 221, pp. 397-407, 2006, doi: 10.1243/09544054JEM617.
  • 2. R. Cottam, V. Luzin, K. Thorogood, Y. C. Wong, and M. Brandt, “The role of metallurgical solid state phase transformations on the formation of residual stress in laser cladding and heating,” Mater. Sci. Forum, vol. 777, pp. 19-24, 2014, doi: 10.4028/www.scientific.net/MSF.777.19.
  • 3. A. De and T. Debroy, “A perspective on residual stresses in welding,” Sci. Technol. Weld. Join., vol. 16, no. 3, pp. 204-208, 2017, doi: 10.1179/136217111X12978476537783.
  • 4. P. Biswas, N. R. Mandal, P. Vasu, and S. B. Padasalag, “Analysis of welding distortion due to narrow-gap welding of upper port plug,” Fusion Eng. Des., vol. 85, no. 5, pp. 780-788, 2010, doi: 10.1016/j.fusengdes.2010.05.025.
  • 5. P. Biswas, N. R. Mandal, and S. Das, “Prediction of welding deformations of large stiffened panels using average plastic strain method,” Sci. Technol. Weld. Join., vol. 16, no. 3, pp. 227-231, 2011, doi: 10.1179/1362171811Y.0000000004.
  • 6. P. K. Ghosh, K. Devakumaran, and A. K. Pramanick, “Effect of pulse current on shrinkage stress and distortion in multipass GMA welds of different groove sizes,” Weld. J. (Miami, Fla), vol. 89, no. 3, pp. 14-23, 2010.
  • 7. C. Basavaraju, “Simplified analysis of shrinkage in pipe to pipe butt welds,” Nucl. Eng. Des., vol. 197, pp. 239-247, 2000.
  • 8. G. A. Webster and A. N. Ezeilo, “Residual stress distributions and their influence on fatigue lifetimes,” Int. J. Fatigue, vol. 23, pp. 375-383, 2001.
  • 9. P. Dong and P. Dong, “Residual stresses and distortions in welded structures : a perspective for engineering applications Residual stresses and distortions in welded structures : a perspective for engineering applications,”Sci. Technol. Weld. Join., vol. 10, no. 4, pp. 389-398, 2004, doi: 10.1179/174329305X29465.
  • 10. P. G. Kumar and K. Yu-ichi, “Diffusible Hydrogen In Steel Weldments,” Trans. JWRI, vol. 42, no. 1, pp. 39-62, 2013.
  • 11. A. H. Yaghi, T. H. Hyde, A. A. Becker, and W. Sun, “Finite element simulation of welding and residua stresses in a P91 steel pipe incorporating solid-state phase transformation and post-weld heat treatment,” J. Strain Anal. Eng. Des., vol. 43, no. 5, pp. 275-293, 2008, doi: 10.1243/03093247JSA372.
  • 12. P. Dong, “Residual Stress Analyses of a Multi-Pass Girth Weld : 3-D Special Shell Versus Axisymmetric Models,” J. Press. Vessel Technol., vol. 123, pp. 207-213, 2001, doi: 10.1115/1.1359527.
  • 13. M. Zubairuddin, S. K. Albert, M. Vasudevan, S. Mahadevan, V. Chaudhri, and V. K. Suri, “Thermomechanical analysis of preheat effect on grade P91 steel during GTA welding,” Mater. Manuf. Process., vol. 31, no. 3, pp. 366-371, 2016, doi: 10.1080/10426914.2015.1025964.
  • 14. D. Dean and M. Hidekazu, “Prediction of welding residua stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effect,” Comput. Mater. Sci., vol. 37, pp. 209-219, 2006, doi: 10.1016/j.commatsci.2005.06.010.
  • 15. H. Murakawa et al., “Effect of phase transformation onset temperature on residual stress in welded thin steel plates,” Trans. JWRI, vol. 37, no. 02, pp. 75-80, 2008.
  • 16. S. Loöpez-Ramirez, J. D. J. Barreto, J. Palafox-Ramos, R. D. Morales, and D. Zacharias, “Modeling study of the influence of turbulence inhibitors on the molten steel flow, tracer dispersion, and inclusion trajectories in tundishes,” Metall. Mater. Trans. B, vol. 32, no. 4, pp. 615-627, 2001, doi: 10.1007/s11663-001-0117-4.
  • 17. J. M. Cabrera-Marrero, V. Carreno-Galindo, R. D. Morales, and F. Chavez-Alcala, “Macro-Micro modeling of the dentritic microstructure of steel billets processes by continuous casting,” ISIJ Int., vol. 38, no. 8, pp. 812-821, 1998.
  • 18. A. Mitra, N. Siva Prasad, and G. D. Janaki Ram, “Estimation of residual stresses in an 800 mm thick steel submerged arc weldment,” J. Mater. Process. Technol., vol. 229, pp. 181-190, 2016, doi: 10.1016/j.jmatprotec.2015.09.007.
  • 19. A. Mitra, N. Siva Prasad, and G. D. Janaki Ram, “Influence of temperature and time of post-weld heat treatment on stress relief in an 800-mm-thick steel weldment,” J. Mater. Eng. Perform., vol. 25, no. 4, pp. 1384-1393, 2016, doi: 10.1007/s11665-016-1995-6.
  • 20. D. Deng, H. Murakawa, and W. Liang, “Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe,” Comput. Mater. Sci., vol. 42, no. 2, pp. 234-244, 2008, doi: 10.1016/j.commatsci.2007.07.009.
  • 21. Y. Sattari-Far, IJavadi, “Influence of welding sequence on welding distortions in pipes,” Int. J. Press. Vessel. Pip., vol. 85, pp. 265-274, 2008, doi: 10.1016/j.ijpvp.2007.07.003.
  • 22. S. Kim, J. Kim, and W. Lee, “Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr - 1Mo steel weld,” J. Mater. Process. Technol., vol. 209, pp. 3905-3913, 2009, doi: 10.1016/j.jmatprotec.2008.09.012.
  • 23. P. K. Ghosh, R. R. Kumar, and A. K. Pramanick, “Effect of pulse current on shrinkage stress and distortion in multi pass GMA welds of different groove sizes,” Indian Weld. JournalWelding J., vol. 43-s, pp. 14-24, 2010.
  • 24. R. Anant and P. K. Ghosh, “Experimental investigation on transverse shrinkage stress and distortion of extra narrow and conventional gap dissimilar butt joint of austenitic stainless steel to low alloy steel,” Proc. Int. Conf. Mining, Mater. Metall. Eng., no. 161, pp. 1-5, 2014.
  • 25. S. Arunkumar, P. Rangarajan, K. Devakumaran, and P. Sathiya, “Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes,” Def. Technol., vol. 11, no. 3, pp. 262-268, 2015, doi: 10.1016/j.dt.2015.05.008.
  • 26. A. H. Yaghi et al., “A comparison between measured and modeled residual stresses in a circumferentially butt-welded P91 steel pipe,” J. Press. Vessel Technol., vol. 132, pp. 1-10, 2010, doi: 10.1115/1.4000347.
  • 27. S. Paddea, J. A. Francis, A. M. Paradowska, P. J. Bouchard, and I. A. Shibli, “Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment,” Mater. Sci. Eng. A, vol. 534, pp. 663-672, 2012, doi: 10.1016/j.msea.2011.12.024.
  • 28. K. A. Venkata, S. Kumar, H. C. Dey, D. J. Smith, and P. J. Bouchard, “Study on the effect of post weld heat treatment parameters on the relaxation of welding residua stresses in electron beam welded P91 steel plates,” Procedia Eng., vol. 86, pp. 223-233, 2014, doi: 10.1016/j.proeng.2014.11.032.
  • 29. T. C. Chuvas, P. S. P. Garcia, J. M. Pardal, and M. da P. C. Fonseca, “Influence of heat treatment in residua stresses generated in P91 steel-pipe weld,” Mater. Res., vol. 18, no. 3, pp. 614-621, 2015, doi: 10.1590/1516-1439.006315.
  • 30. S. Kulkarni, P. K. Ghosh, and S. Ray, “Improvement of weld characteristics by variation in welding processes and parameters in joining of thick wall 304LN stainless steel pipe,” ISIJ Int., vol. 48, no. 11, pp. 1560-1569, 2008.
  • 31. Y. Zhao, J. Gong, Y. Wang, and G. Wei, “Effect of start/stop position distribution on residual stresses in the multi-pass welded 12Cr1MoV/P91 dissimilar pipe,” Int. J. Steel Struct., vol. 14, no. 3, pp. 539-546, 2014, doi: 10.1007/s13296-014-3010-0.
  • 32. N. Hempel, T. Nitschke-Pagel, and K. Dilger, “Residual stresses in multi-pass butt-welded ferritic-pearlitic steel pipes,” Weld. World, vol. 59, no. 4, pp. 555-563, 2015, doi: 10.1007/s40194-015-0230-7.
  • 33. M. K. Satyarthi and P. M. Pandey, “Modeling of material removal rate in electric discharge grinding process,” Int. J. Mach. Tools Manuf., vol. 74, pp. 65-73, 2013, doi: 10.1016/j.ijmachtools.2013.07.008.
  • 34. V. Sharma and P. M. Pandey, “Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel,” Ultrasonics, vol. 70, pp. 172-182, 2016, doi: 10.1016/j.ultras.2016.05.001.
  • 35. R. S. Mulik and P. M. Pandey, “Magnetic abrasive finishing of hardened AISI 52100 steel,” Int. J. Adv. Manuf. Technol., vol. 55, no. 5-8, pp. 501-515, 2011, doi: 10.1007/s00170-010-3102-8.
  • 36. ASTM E837-13a, Standard test method for determining residual stresses by the hole drilling strain gage method. ASTM International, West Conshohocken, PA, 2013, 2013. doi: 10.1520/E0837-13A.2.
  • 37. M. Z. H. Khandkar, J. A. Khan, A. P. Reynolds, and M. A. Sutton, “Predicting residual thermal stresses in friction stir welded metals,” J. Mater. Process. Technol., vol. 174, no. 1-3, pp. 195-203, 2006, doi: 10.1016/j.jmatprotec.2005.12.013.
  • 38. L. X. Jang, X. F. Peng, and B. X. Wang, “Numerical modeling and experimental investigation on the characteristics of molten pool during laser treatment,” Int. J. Heat Mass Transf., vol. 44, pp. 4465-4473, 2001.
  • 39. J. Goldak, “Computer modeling of heat flow in welds,” Met. Trans., pp. 17-26, 1986.
  • 40. B. Brickstad and B. L. Josefson, “A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes,” Int. J. Press. Vessel. Pip., vol. 75, pp. 11-25, 1998, doi: 10.1016/S0308-0161(97)00117-8.
  • 41. C. Liu, J. X. Zhang, and C. B. Xue, “Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes,” Fusion Eng. Des., vol. 86, no. 4-5, pp. 288-295, 2011, doi: 10.1016/j.fusengdes.2011.01.116.
  • 42. M. M. Mahapatra, G. L. Datta, B. Pradhan, and N. R. Mandal, “Three-dimensional finite element analysis to predict the effects of SAW process parameters on temperature distribution and angular distortions in single-pass butt joints with top and bottom reinforcements,” Int. J. Press. Vessel. Pip., vol. 83, no. 10, pp. 721-729, 2006, doi: 10.1016/j.ijpvp.2006.07.011.
  • 43. P. Biswas and N. R. Mandal, “Thermomechanical finite element analysis and experimental investigation of single-pass single-sided submerged arc welding of C-Mn steel plates,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 224, no. 4, pp. 627-639, 2010, doi: 10.1243/09544054JEM1624.
  • 44. P. Biswas, D. A. Kumar, N. R. Mandal, and M. M. Mahapatra, “A study on the effect of welding sequence in fabrication of large stiffened plate panels,” J. Mar. Sci. Appl., vol. 10, no. 4, pp. 429-436, 2011, doi: 10.1007/s11804-011-1088-8.
  • 45. TN-503, “Measurement of residual stresses by the hole drilling strain gauage method,” Vishay Precision Group, pp. 19-33, 2010.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d4cfa92-b1d1-402f-aba9-cc54843b12fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.