PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power supply with parallel reactive and distortion power compensation and tunable inductive filter – Part 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents a DC power supply with power factor correction (PFC). This device is also equipped with a parallel active filter function, which enables the possibility of compensation (minimization) of reactive and distortion power, generated by a group of loads, connected to the same power grid node. A passive filter with variable inductance applied at the input of the power supply allows for a significantly improvement in quality of the system control (given specific criteria), as compared to the solution with a filter with fixed parameters. This is possible by increasing the dynamics of current changes at the power supply input (extending its “frequency response”). The paper presents the principle of operation as well as structures and models of the power supply control system and its power stage. Selected test results its power of the simulation model of the electric system with the power supply, in various operating conditions, are also presented.
Rocznik
Strony
401--408
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Poznan University of ofTechnology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
  • Poznan University of ofTechnology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
  • Poznan University of ofTechnology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • [1] B. Kroposki, C. Pink, R. DeBlasio, T. Holly, M. Simöes, and K.S. Pankaj, “Benefits of power electronic interfaces for distributed energy systems”, IEEE Trans. Energy Convers. 25, 901–908 (2010).
  • [2] R.L. Kirlin, C. Lascu, and A.M. Trzynadlowski, “Shaping the noise spectrum in power electronic converters”, IEEE Trans. Ind. Electron. 58, 2780–2788 (2011).
  • [3] A. Benchabira and M. Khiat, “A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network”, Archives of Electrical Engineering 68, 535–551 (2019).
  • [4] L.S.M. Depenbrock, D.A. Marshall, and J.D. Van Wyk, “Formulating requirements for a universally applicable power theory as control algorithm in power compensators”, Eur. Trans. Electr. Power 4 (6), 445–455 (1994).
  • [5] M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Maciążek, “Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation – part I”, Archives of Electrical Engineering 67 (3), 591–602 (2018).
  • [6] M. Siwczyński and M. Jaraczewski, “Reactive compensator synthesis in time-domain”, Bull. Pol. Ac.: Tech. 60 (1), 119–124 (2012).
  • [7] K. Mikołajuk and A. Toboła, “Average time–varying models of active power filters”, Przegląd Elektrotechniczny 95 (1), 53–55 (2010).
  • [8] H. Akagi, E.H. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning, John Wiley & Sons Inc., Published by John Wiley & Sons, New Jersey, ISBN: 978-0-470-10761-4, 2007.
  • [9] K.K. Shyu, M.J. Yang, C.Y.M Chen, and Y.F. Lin, “Model reference adaptive control design for a shunt active-power-filter system”, IEEE Trans. Ind. Electron. 55, 97–106 (2008).
  • [10] A. Kouzou, M.O. Mahmoudi, and M.S. Boucherit, “Evaluation of the Shunt Active Power Filter apparent power ratio using particle swarm optimization”, Archives of Control Sciences 20, 47–76 (2010).
  • [11] A. Szromba, “Shunt power electronic buffer as active filter and energy flow controller”, Archives of Control Sciences 62, 55–75 (2013).
  • [12] M. Gwóźdź, “Power electronics active shunt filter with controlled dynamics”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 32 (4), 1337–1344 (2013).
  • [13] K. Antoniewicz and K. Rafal, “Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter”, Bull. Pol. Ac.: Tech. 65 (5), 601–607 (2017).
  • [14] W. Śleszyński, A. Cichowski, and P. Mysiak, “Current harmonic controller in multiple reference frames for series active power filter integrated with 18-pulse diode rectifier”, Bull. Pol. Ac.: Tech. 66 (5), 699–704 (2018).
  • [15] M. Maciążek and D. Grabowski, “Comparison of active power filter control algorithms”, Prace Naukowe Politechniki Śląskiej. Elektryka, Silesian University of Technology 4 (236), 7–17 (2015) [in Polish].
  • [16] L. Huber, Y. Jang, and M.M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers”, IEEE Trans. Power Electron. 23, 1381–1390 (2008).
  • [17] A. Bogdan, “Modeling of the AC/HF/DC converter with power factor correction”, Archives of Electrical Engineering 59, 141–152 (2010).
  • [18] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC rectifier with reduced components and conduction losses”, IEEE Trans. Ind. Electron. 58, 4153–4160 (2010).
  • [19] X. Xie, C. Zhao, L. Zheng, and S. Liu, “An improved buck PFC converter with high power factor”, IEEE Trans. Power Electron. 28, 2277–2284 (2013).
  • [20] H. Choi, “Interleaved boundary conduction mode (BCM) buck power factor correction (PFC) converter”, IEEE Trans. Power Electron. 28, 2629–2634 (2013).
  • [21] Y. Rozanov, S. Ryvkin, E. Chaplygin, and P. Voronin, Fundamentals of power electronics: operating principles, design, formulas, and applications, CRC Press, 2015.
  • [22] M.H. Rashid, Power Electronics Handbook, Elsevier Ltd. Oxford, ISBN: 0-12-581650-2, 2018.
  • [23] M. Krystkowiak, “Modified model of wideband power electronics controlled current source with output current modulation”, Elektronika – konstrukcje, technologie, zastosowania 57 (11), 65–70 (2016) [in Polish].
  • [24] W. Kester, The Data Conversion Handbook, Analog Devices Inc, Newnes, 2005.
  • [25] Mitsubishi Electric, Intelligent Power Modules. http://www.mitsubishielectric.com/semiconductors/products/powermod/intelligentpmod/index.html. Accessed: August 2019.
  • [26] M. Gwóźdź, “Broadband power electronics controlled voltage source with output stage based on GaN transistors”, Przegląd Elektrotechniczny 95 (5), 70–73 (2018).
  • [27] M. Gwóźdź, “Power electronics programmable voltage source with gan modules in power stage”, Proceedings of the XIV National Conference Control in Power Electronics and Electric Drives SENE 2019, Łódź, November 20-22 (2019).
  • [28] T. Kaczorek, Fundamentals of control theory, Edition II, Scientific and Technical Publishing House, Warsaw, 2005, 2006 [in Polish].
  • [29] J.C. Doyle, B.A. Francis, and A.R. Tannenbaum, Feedback Control Theory, Dover Publications, ISBN: 130632548X, 2013.
  • [30] B. Francis and T. Georgiou, “Stability theory for linear time-invariant plant with periodic digital controllers”, IEEE Trans. Autom. Control 33 (9), 820–832 (1988).
  • [31] L. Mirkin, “Transfer functions of sampled-data systems in the lifted domain”, in Proc. 44th IEEE Conf. on Decision and Control & European Control Conf. ECC’05 (Seville, Spain), 5180–5185 (2005).
  • [32] M. Gwóźdź, “Stability of discrete time systems on base of generalized sampling expansion”, Prace Naukowe Politechniki Śląskiej. Elektryka, Silesian University of Technology 1 (217), 29–40 (2011).
Uwagi
EN
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d4a07f7-136f-4c95-b5b5-97fa53227d58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.