PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efects of hillslope geometry on soil moisture defcit and base fow using an excess saturation model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimation of watersheds base fow as a component of subsurface runof is of signifcant importance, in particular, in watersheds of high permeability where the contribution of base fow to total runof is large compared to that of surface fow. Complex hillslopes in nature have a diferent profle curvatures (concave, straight, and convex) and plan shapes (convergent, parallel, and divergent). In this study, an excess saturation model is developed to estimate the soil moisture defcit (SMD) profle along complex hillslopes. A new equation is presented which can predict base fow of hillslopes according to the spatially averaged SMD and topographic index over the hillslope surface. It is concluded that the hillslope geometry can obviously afect hillslope saturation and SMD. Moreover, the efect of convergence on SMD is higher than that of divergence. The largest and smallest efects on SMD are related to the convex convergent hillslope and the straight divergent one, respectively. Finally, the results of the developed model are compared to those derived from the solution of the hillslope-storage Boussinesq (HSB) equations for complex hillslopes.
Czasopismo
Rocznik
Strony
773--782
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Department of Civil Engineering, Islamic Azad University, Estahban Branch, Fars, Iran
  • Department of Civil Engineering, Islamic Azad University, Estahban Branch, Fars, Iran
Bibliografia
  • 1. Aryal SK, O’Loughlin EM, Mein RG (2002) A similarity approach to predict landscape saturation in catchments. Water Resour Res 38(10):1208
  • 2. Aryal SK, O’Loughlin EM, Mein RG (2005) A similarity approach to determine response times to steady-state saturation in landscapes. Adv Water Resour 28:99–115
  • 3. Beven KJ, Kirkby MJ (1979) A Physically Based Variable Contributing Area Model of Basin Hydrology. Hydrol Sci Bull 24(1):43–69
  • 4. Beven KJ, Wood EF (1983) Catchment geomorphology and the dynamics of runoff contributing areas. J Hydol 65:139–158
  • 5. Beven KJ, Kirkby MJ, Schofield N, Tagg AF (1984) Testing a physical flood forecasting model TOPMODEL for three U.K. catchments. J Hydrol 69:119–143
  • 6. Evans IS (1980) An integrated system of terrain analysis and slope mapping. Zeitschrift fur Geomorphologie, Supplementband 36:274–295
  • 7. Fan Y, Bras RL (1998) Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resour Res 34(2):921–927
  • 8. Hilberts A, Van Loon E, Troch P, Paniconi C (2004) The hillslope-storage Boussinesq model for non-constant bedrock slope. J Hydrol 291:160–173
  • 9. Hilberts A, Troch P, Paniconi C (2005) Storage-dependent drainable porosity for complex hillslopes. Water Resour Res 41:W06001. https://doi.org/10.1029/2004WR003725
  • 10. Moore RC, Thomson J (1996) C (1996) Are water table variations in a shallow forest soil consistent with the TOPMODEL concept? Water Resour Res 32(3):663–669
  • 11. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. J Hydrol 10:282–290
  • 12. O'Loughlin EM (1981) Saturation regions in catchments and their relations to soil and topographic properties. J Hydrol 53:229–246
  • 13. O'Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22(5):794–804
  • 14. Sabzevari T, Talebi A, Ardakanian R, Shamsai A (2010) A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes. Hydrol Earth Syst Sci 14:891–900
  • 15. Sabzevari T, Saghafian B, Talebi A (2013) Time of concentration of surface flow in complex hillslopes. J Hydrol Hydromech 61(4):269–277. https://doi.org/10.2478/johh-2013-0034
  • 16. Sabzevari T, Noroozpour S (2014) Effects of hillslope geometry on surface and subsurface flows. Hydrogeol J 22(7):1593–1604
  • 17. Sabzevari T, Noroozpour S, Pishvaei M (2015) Effects of geometry on runoff time characteristics and time-area histogram of hillslopes. J Hydrol 531:638–648
  • 18. Talebi A, Troch PA, Uijlenhoet R (2008) A steady-state analytical hillslope stability model for complex hillslopes. Hydrol Process 22:546–553
  • 19. Troch PA, van Loon AH, Hilberts AGJ (2002) Analytical solutions to a hillslope storage kinematic wave equation for subsurface flow. Adv Water Resour 25(6):637–649
  • 20. Troch PA, van Loon AH, Paniconi C (2003) Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formul Water Resour Res 39(11):1316. https://doi.org/10.1029/2002WR001728
  • 21. Wood EF, Sivapalan M, Beven KJ (1990) Similarity and scale in catchment storm response. Rev Geophys 28:1–18
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d496a05-eaac-499a-a0de-38309f14d6a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.