PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Disinfection Properties of Conventional White LED Illumination and Their Potential Increase by Violet LEDs for Applications in Medical and Domestic Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The antimicrobial impact of visible violet and blue light has been known for more than a century but hardly been applied for purposeful pathogen reduction or prevention. The disinfecting properties of wide-spread warm-white and cool-white light emitting diodes (LEDs) are investigated by irradiation of staphylococci with different LEDs and varying doses. Additionally, the combination of a white and a violet LED illumination is examined. Both white LEDs exhibit an antimicrobial effect, which seems to be dominated by the blue parts of the LED emissions. Unfortunately, the antimicrobial effect is weak in realistic illumination applications. Additional violet LEDs can significantly enhance this impact without a large change in human color perception. This allows reasonable applications in certain medical and domestic environments without endangering humans.
Słowa kluczowe
Twórcy
autor
  • Institute of Medial Engineering and Mechatronics, Ulm University of Applied Sciences, Germany
  • Institute of Medial Engineering and Mechatronics, Ulm University of Applied Sciences, Germany
  • Institute of Medial Engineering and Mechatronics, Ulm University of Applied Sciences, Germany
  • Institute of Medial Engineering and Mechatronics, Ulm University of Applied Sciences, Germany
  • Institute of Medial Engineering and Mechatronics, Ulm University of Applied Sciences, Germany
Bibliografia
  • 1. Downes A, Blunt TP. Researches on the Effect of Light upon Bacteria and other Organisms. Proceedings of the Royal Society of London. 1877;26:488– 500. doi:10.1098/rspl.1877.0068.
  • 2. Ward HM. The Action of Light on Bacteria. III. Philosophical Transactions of the Royal Society B: Biological Sciences. 1894;185:961–86. doi:10.1098/rstb.1894.0020.
  • 3. Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunology & Medical Microbiology. 2003;35:17–24. doi:10.1111/j.1574695X.2003.tb00644.x.
  • 4. Guffey JS, Wilborn J. In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg. 2006;24:684–8. doi:10.1089/ pho.2006.24.684.
  • 5. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus. FEMS Microbiol Lett. 2008;285:227–32. doi:10.1111/j.1574-6968.2008.01233.x.
  • 6. Hessling M, Spellerberg B, Hoenes K. Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths A review on existing data. FEMS Microbiol Lett. 2016;364:fnw270. doi:10.1093/ femsle/fnw270.
  • 7. Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation Effect of Violet and Blue Light on ESKAPE Pathogens and Closely Related Non-pathogenic Bacterial Species A Promising Tool Against Antibiotic-Sensitive and Antibiotic-Resistant Microorganisms. Front Microbiol. 2020;11:612367. doi:10.3389/fmicb.2020.612367.
  • 8. Vatter P, Hoenes K, Hessling M. Photoinactivation of the Coronavirus Surrogate phi6 by Visible Light. Photochem Photobiol. 2021;97:122–5. doi:10.1111/php.13352.
  • 9. Feuerstein O, Ginsburg I, Dayan E, Veler D, Weiss EI. Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem Photobiol. 2005;81:1186–9. doi:10.1562/2005-04-06-RA-477.
  • 10. Amin RM, Bhayana B, Hamblin MR, Dai T. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies. Lasers Surg Med. 2016;48:562–8. doi:10.1002/lsm.22474.
  • 11. Plavskii VY, Mikulich AV, Tretyakova AI, Leusenka IA, Plavskaya LG, Kazyuchits OA, et al. Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells. J Photochem Photobiol B. 2018;183:172–83. doi:10.1016/j. jphotobiol.2018.04.021.
  • 12. Cieplik F, Spath A, Leibl C, Gollmer A, Regensburger J, Tabenski L, et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin Oral Investig. 2014;18:1763–9. doi:10.1007/s00784-013-1151-8.
  • 13. Maclean M, Macgregor SJ, Anderson JG, Woolsey GA, Coia JE, Hamilton K, et al. Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect. 2010;76:247–51. doi:10.1016/j.jhin.2010.07.010.
  • 14. Bache SE, Maclean M, MacGregor SJ, Anderson JG, Gettinby G, Coia JE, Taggart I. Clinical studies of the High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINSlight EDS), for continuous disinfection in the burn unit inpatient and outpatient settings. Burns: Journal of the International Society for Burn Injuries. 2012;38:69–76. doi:10.1016/j.burns.2011.03.008.
  • 15. Maclean M, Booth MG, Anderson JG, Macgregor SJ, Woolsey GA, Coia JE, et al. Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. Journal of Infection Prevention. 2013;14:176–81. doi:10.1177/1757177413483646.
  • 16. Yin R, Dai T, Avci P, Jorge AES, de Melo, Wanessa C M A, Vecchio D, et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013;13:731–62. doi:10.1016/j.coph.2013.08.009.
  • 17. Gillespie JB, Maclean M, Wilson MP, Given MJ, MacGregor SJ. Development of an antimicrobial blended white LED system containing pulsed 405nm LEDs for decontamination applications. In: Raghavachari R, Liang R, Pfefer TJ, editors. SPIE BiOS; Saturday 28 January 2017; San Francisco, California, United States: SPIE; 2017. 100560Y. doi:10.1117/12.2250539.
  • 18. Rohan A, Khan I, Yin D, Yang J. Passive Ceiling Light Disinfection System to Reduce Bioburden in an Intensive Care Unit. J Pediatr Intensive Care. 2019;8:138–43. doi:10.1055/s-0038-1676655.
  • 19. Rutala WA, Kanamori H, Gergen MF, SickbertBennett EE, Sexton DJ, Anderson DJ, et al. Antimicrobial activity of a continuous visible light disinfection system. Infect Control Hosp Epidemiol. 2018;39:1250–3. doi:10.1017/ice.2018.200.
  • 20. Hessling M, Spellerberg B, Hönes K. Potential selfdisinfection capacity of touch screen displays. J Biophotonics. 2019;12:e201900118. doi:10.1002/ jbio.201900118.
  • 21. Hoenes K, Stangl F, Sift M, Hessling M. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes. In: Amelink A, Vitkin IA, editors; Sunday 21 June 2015; Munich, Germany: SPIE; 2015. p. 95400. doi:10.1117/12.2183903.
  • 22. User Par. Planckian Locus. 2012. https://commons.wikimedia.org/wiki/File:PlanckianLocus. png. Accessed 2021.
  • 23. DIN Deutsches Institut für Normung e.V. DIN EN 12464-1:2019-06, Licht und Beleuchtung_Beleuchtung von Arbeitsstätten_Teil_1: Arbeitsstätten in Innenräumen; Deutsche und Englische Fassung prEN_12464-1:2019 2019. Berlin: Beuth Verlag GmbH. doi:10.31030/3045264.
  • 24. Murdoch LE, Maclean M, MacGregor SJ, Anderson JG. Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathog Dis. 2010;7:1211–6. doi:10.1089/ fpd.2010.0561.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d492427-3555-4716-bcbc-dc3835cc9223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.