PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Genetic algorithms solution to the single-objective machining process optimization time model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minimum Production Time model of the machining process optimization problem comprising seven lathe machining operations were developed using Genetic Algorithms solution method. The various cost and time components involved in the minimum production cost and minimum production time criteria respectively, as well as all relevant technological/practical constraints were determined. An interactive, user-friendly computer package was then developed in Microsoft Visual Basic.Net environment to implement the developed models. The package was used to determine optimal machining parameters of cutting speed, feed rate and depth of cut for the seven machining operations with twenty-three technological constraints in the conversion of a cylindrical metal bar stock into a finished machined profile. The result of the single-objective machining process optimization models shows that the minimum production time is 21.84 min.
Rocznik
Strony
13--23
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Production, Faculty of Engineering, University of Benin, P.M.B 1154, Benin City, Nigeria
  • Department of Production, Faculty of Engineering, University of Benin, P.M.B 1154, Benin City, Nigeria
Bibliografia
  • 1. Taylor, F. W., 1907. On the art of cutting metals. Transactions of ASME. 28: 31-35.
  • 2. Ermer, D. S., 1997. A Century of Optimizing Machining Operations. Journal of Manufacturing Science and Engineering - Transactions of the ASME. 119: 817-822.
  • 3. Koenigsburger, F., 1964. Design Principals of Metal Cutting Machine Tools. Peragamon, Oxford.
  • 4. Armarego, E. J. A. and Brown R. H., 1980. The machining of metals. Prentice Hall, Inc. Englewood Cliffs, New Jersey.
  • 5. Merchant, E., 1998. Proceedings of the CIRP International Workshop on Modeling of Machining Operations, Atlanta, GA, USA.
  • 6. Sonmez, A. I. and Baykasoglu A., 1999. Dynamic optimization of multi-pass milling operations via geometric programming. International Journal Machine Tools and Manufacture. 39: 297-320.
  • 7. Kumar, R. and Kumar V., 2000. Optimum selection of machining conditions in abrasive flow machining using neural networks. Journal of Material Processing Technology. 108: 62-67.
  • 8. Ermer, D. S. and Patel D. C., 1974. Maximization of the Production Rate with Constraints by Linear Programming and Sensitivity Analysis. Proc. NAMRC. 2: 436-449.
  • 9. Milner, D. A., 1976. Use of Linear Programming for Machinability Data Optimization. ASME J. Mech. Design. 100: 286-291.
  • 10. Agapiou, J. S., 1992. The Optimization of machining operations based on a combined criterion; Parts 1 &2: The use of combined objectives in single pass operations. Computers Ind. Trans. ASME. 114: 500-507.
  • 11. Ermer, D. S., 1997. A Century of Optimizing Machining Operations. Journal of Manufacturing Science and Engineering - Transactions of the ASME. 119: 817-822.
  • 12. Wen, X. M., Tay A.O.O. and Nee A.Y.C., 1992. Micro-Computer-Based Optimization of the Surface Grinding Process. Journal of Materials Processing Technology. 29: 75-90.
  • 13. Xiao, G., Malkin S. and Sanai K., 1992. Intelligent Control of Cylindrical Plunge Grinding. Proceedings of the ACC, Chicago, IL. 391-398. 30.
  • 14. Jha, N. K. and Hornik K., 1995. Integrated Computer-aided Optimal Design and Finite Element Analysis of a Plain Milling Cutter. Appl. Math. Modeling. 19: 343-352.
  • 15. Jang, Y. D., 1992. A unified Optimization model of a machining process for specified conditions of machined surface and process performance. International Journal of Production Research. 30(3): 647-663.
  • 16. Ermer, D. S., 1971. Optimization of the Constrained Machining Economics Problem by Geometric Programming. Journal of Engineering for Industry. Transactions of ASME. 93: 1067.
  • 17. Lambert, B. and Walvekar A., 1978. Optimization of multi-pass machining operations. International Journal of Production Research. 16: 259-265.
  • 18. Shin, Y. C. and Joo Y. S., 1992. Optimization of machining conditions with practical constraints. International Journal of Production Research. 30: 2907-2919.
  • 19. Lee, Y. H., Yang B. H. and Moon K. S., 1999. An economic Machining Process model using fuzzy nonlinear programme and neural network. International Journal of production Research. 37(4): 835-847.
  • 20. Groover, M. P., 1975. Monte Carlo Simulation of the Machining Economics Problem. Transactions of the ASME. 97: 931-938.
  • 21. Dereli, T., Filiz I. H and Baykasogln A., 2001. Optimizing Cutting Parameters in Process Planning of prismatic Parts by using Genetic Algorithms. International Journal of Production Research. 39(15): 3303-3328.
  • 22. Srikanth, T. and kamala V., 2008. A Real Coded Genetic Algorithm for optimization of Cutting Parameters in Turning. International Journal of Computer Science and Network Security. 8(6): 189-193.
  • 23. Saravanan, R., Asokan P. and Vijaya-Kumar K. 2003. Machining Parameters Optimization for turning Cylindrical Stock into a Continuous Finished Profile using Genetic Algorithms and Simulated Annealing. International Journal of Advance Manufacturing technology. 21: 1-9.
  • 24. Amiolemhen, P. E. and Ibhadode A.O.A., 2004. Application of Genetic Algorithms- Determination of the Optimal Machining Parameters in the Conversion of a Cylindrical bar stock into a continuous finished profile. International Journal of Machine tools and Manufacture. 140 (1-3): 340-345.
  • 25. Chen, J. and Gao D. M., 2006. Multi-objective genetic algorithm for the optimization of road surface cleaning process. Journal Zhejiang University. Science A, 7(8): 1416-1421.
  • 26. Dereli, T. and Filiz I. H., 1999. Optimization of Process Planning Functions by Genetic Algorithms. Computers and Industrial Engineering. 36: 281-308.
  • 27. Dereli, T. and Filiz I. H., 2000. Allocating optimal Index Positions on Tool Magazines using Genetic Algorithms. Robotics and Autonomous Systems. 33: 155-167.
  • 28. Ahmad, N., Tanaka T. and Saito Y., 2006. Cutting parameters optimization and constraints investment for turning process by GA with self-organizing Adaptive penalty strategy. JMSE International Journal, series C. 49(2): 293-300.
  • 29. Onwubolu, G. C. and Kumalo T., 2002. Multi-pass turning optimization based on Genetic Algorithms. International Journal of Production Research. 39(16): 3727-3745.
  • 30. Schaffer, J. D., 1989. A study of control parameters affecting on line performance of Genetic algorithms for function optimization. Proceedings of the third International Conference on Genetic Algorithms, Los Altos. 51-60.
  • 31. Gen, M. and Cheng R., 1997. Genetic Algorithms and Engineering Design. Wiley Publishers, U.S.A.
  • 32. Chen, M. C. and Tseng H. Y., 1998. Machining parameters selection for stock removal turning in process planning using a float encoding genetic algorithm. Journal of the Chinese Institute of Engineers. 16(4): 493-506.
  • 33. Ibhadode, A. O. A., 2009. Precision die design by the die expansion method. Trans. Tech Publications Ltd., Zurich.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d380368-da81-48ce-8141-f0d253309cbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.