PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser welding of stainless steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper was to analyze the influence of the basic parameters of laser welding (i.e. laser beam power and welding speed, as well as energy input) of butt joints of the 2.0 mm thick stainless steel AISI 304 sheets on the weld shape and joint quality. Design/methodology/approach: The preliminary trials of simulated laser welding by melting the austenitic stainless steel sheets (the so called bead-on-plate welding), as well as the welding of the test butt joints, were carried out using the high-power diode laser (HPDL) ROFIN DL 020, without the additional material (the technique of autogenous welding). A crucial parameter that determines both the mechanical properties and the corrosive resistance of a joint (the region of a weld and HAZ - heat affected zone) in the case of stainless steels with austenitic structure is energy input, which should be kept at a minimum, and at the same time full penetration and a proper shape of the fusion zone should be ensured. The investigations included the macrostructure and microstructure observations by light microscopy, researches of mechanical properties in a static tensile test and also microhardness measurements made by Vickers method. Findings: The results have shown that it is possible to provide a proper shape of the weld of fine-grained structure and narrow heat affected zone, but it requires careful selection of the welding parameters, especially a low energy input. The microhardness measurements showed that the in case of welding the butt joints using the high-power diode laser in HAZ area a slight increase in microhardness to approx. 185HV0.2 compared to base material (160-169HV0.2) and a decrease in microhardness in the fusion zone (FZ) to approx. 140- 150HV0.2 have been observed. All welded sample broke from the joint during the testing at tensile stress between 585 MPa and 605 MPa with corresponding percentage elongation in the range of 45-57%. It can be found that the joints strength is not less than the strength of the base metal of 2.0 mm thick AISI 304 austenitic stainless steel sheet. Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding. Practical implications: The laser welding technology can be directly applied for welding of austenitic steel AISI 304 sheets 2.0 mm thick. Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 304.
Rocznik
Strony
32--40
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Management Engineering, Scientific Institute of Entrepreneurship and Innovation, Faculty of WSB University in Chorzów, WSB University in Poznan, ul. Sportowa 29, 41-506 Chorzów, Poland
autor
  • Department of Welding Engineering, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards (Eds.), ASM Handbook, vol. 6: Welding, Brazing, Soldering, ASM International, Materials Park, USA, 2014.
  • [2] A. Kurc-Lisiecka, M. Kciuk, The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 210-215.
  • [3] K.M. Hafez, S. Katayama, Fiber laser welding of AISI 304 stainless steel plates, Quarterly Journal of the Japan Welding Society 27/2 (2009) 63-73, DOI: https://doi.org/10.2207/qjjws.27.69s.
  • [4] F. Bachman, Industrial applications of high power diode lasers in materials processing, Applied Surface Science 208-209 (2003) 125-136, DOI: https://doi.org/10.1016/S0169-4332(02)01349-1.
  • [5] A. Świerczyńska, J. Łabanowski, J. Michalska, D. Fydrych, Corrosion behavior of hydrogen charged super duplex stainless steel welded joints, Materials and Corrosion 68/10 (2017) 1037-1045, DOI: https://doi.org/10.1002/maco.201709418.
  • [6] A. Frehn, A. Franje, W. Bleck, A. Weiß, Bedeutung der umformtemperatur und-geschwindigkeit bei fer blechumformung austenitischer edelstähle, Problemstellung und Prüfung unter einachsiger Beansprichyng-Teil I, UTF Science 2/3 (2001) 8-12.
  • [7] R. Sathish, B. Naveen, P. Nijanthan, K. Arun Vasantha Geethan, V. Seshagiri Rao, Weldability and Process Parameter Optimization of Dissimilar Pipe Joints Using GTAW, International Journal of Engineering Research and Applications (IJERA) 2/3 (2012) 2525-2530.
  • [8] Z. Tian, Y. Peng, L. Zhao, H. Xiao, Ch. Ma, Study of Weldability of High Nitrogen Stainless Steel, in: Y. Weng, H. Dong, Y. Gan (Eds.), Advanced Steels, Springer, Berlin, Heidelberg, 465-473.
  • [9] A. Lisiecki, A. Kurc-Lisiecka, Automated laser welding of AISI 304 stainless steel by disk laser, Archives of Metallurgy and Materials 63/4 (2018) 1663-1672, DOI: https://doi.org/10.24425/amm.2018.125091.
  • [10] L. Li, The advances and characteristics of high power diode laser materials processing, Optics and Laser Engineering 34/4-6 (2000) 231-253, DOI: https://doi.org/10.1016/S0143-8166(00)00066-X.
  • [11] A. Lisiecki, R. Burdzik, G. Siwiec, Ł. Konieczny, J. Warczek, P. Folęga, B. Oleksiak, Disk laser welding of car body zinc coated steel sheets, Archives of Metallurgy and Materials 60/4 (2015) 2913-2922, DOI: https://doi.org/10.1515/amm-2015-0465.
  • [12] A. Kurc-Lisiecka, A. Lisiecki, Laser Welding of New Grade of Advanced High Strength Steel Domex 960, Materiali in Tehnologije/Materials and Technology 51/2 (2017) 199-204, DOI: https://doi.org/10.17222/mit.2015.158.
  • [13] A. Kurc-Lisiecka, Impact toughness of laser-welded butt joints of the new steel grade Strenx 1100MC, Materiali in Tehnologije/Materials and Technology 51/4 (2017) 643-649, DOI: https://doi.org/10.17222/mit.2016.234.
  • [14] K. Manonmani, K.N. Murugan, G. Buvanasekaran, Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets, International Journal of Advanced Manufacturing Technology 32 (2007) 1125-1133, DOI: https://doi.org/10.1007/s00170-006-0432-7.
  • [15] G. Moskal, A. Grabowski, A. Lisiecki, Laser remelting of silicide coatings on Mo and TZM alloy, Solid State Phenomena 226 (2015) 121-126, DOI: https://doi.org/ 10.4028/www.scientific.net/SSP.226.121.
  • [16] R. Burdzik, T. Węgrzyn, Ł. Konieczny, A. Lisiecki, Research on influence of fatigue metal damage of the inner race of bearing on vibration in different frequencies, Archives of Metallurgy and Materials 59/4 (2014) 1275-1281, DOI: https://doi.org/10.2478/amm2014-0218.
  • [17] A. Lisiecki, D. Ślizak, A. Kukofka, Robotized Fiber Laser Cladding of Steel Substrate by Metal Matrix Composite Powder at Cryogenic Conditions, Materials Performance and Characterization 8/6 (2019) 12141225, DOI: https://doi.org/10.1520/MPC20190069.
  • [18] O.I. Balits'kii, V.I. Pokhmurs'kii, M.O. Tikhan, Laser treatment of plasma coatings, Soviet Materials Science 27/1 (1991) 51-55.
  • [19] A. Lisiecki, Welding of titanium alloy by different types of lasers, Archives of Materials Science and Engineering 58 (2012) 209-218.
  • [20] O.I. Balits'kii, I.F. Kostyuk, Strength of welded joints of Cr-Mn steels with elevated content of nitrogen in hydrogen-containing media, Materials Science 45 (2009) 97-107, DOI: https://doi.org/10.1007/s11003009-9166-7.
  • [21] A. Lisiecki, Study of optical properties of surface layers produced by laser surface melting and laser surface nitriding of titanium alloy, Materials 12 (2019) 3112, DOI: https://doi.org/10.3390/ma12193112.
  • [22] O.I. Balits'kii, I.F. Kostyuk, O.A. Krokhmalnyj, Physical-mechanical heterogeneity of welded joints of high-nitrogen chromium-manganese steels and their corrosion, Avtomaticheskaya Svarka 2 (2003) 28-31.
  • [23] A. Kurc-Lisiecka, A. Lisiecki, Hybrid Laser-GMA Welding of High-Strength Steel Grades, Materials Performance and Characterization 8/4 (2019) 614-625, DOI: https://doi.org/10.1520/MPC20190070.
  • [24] A. Kurc-Lisiecka, A. Lisiecki, Weld metal toughness of autogenous laser-welded joints of high-strength steel DOMEX 960, Materials Performance and Characterization 8/6 (2019) 1226-1236, DOI: https://doi.org/10.1520/MPC20190071.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d377e6a-0bca-4308-9bdd-f255f4ba21e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.