PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping of inland excess water using geographical information system and high-resolution satellite images : a case study of Srem, Serbia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Extreme hydrological events, such as floods and droughts, are becoming more frequent as a result of climate change, leading to negative impacts on various economic sectors. The Pannonian-Carpathian Basin is particularly affected by the increasing frequency of hazardous hydrological events. Agricultural production, which is a highly significant economic sector in the region, is particularly vulnerable to these unfavourable climatic conditions. Changes in precipitation patterns and soil moisture levels can lead to reduced crop yields, while floods can pollute water sources and erode fertile soil. Mapping of Inland Excess Water (IEW), also known as ponding water or waterlogged areas, is crucial for informed decision-making, damage compensation, risk management, and future prevention planning. Remote sensing technology and machine learning have been demonstrated to be valuable tools for the mapping of IEW. The 2014 floods in Southeastern and Central Europe serve as a reminder of the importance of effective flood risk management. This study used a Geographical Information System (GIS) and a Semi-automated Classification Processing (SCP) tool to process high-resolution RapidEye satellite images from the 2014 floods in the Srem region of Serbia. The Spectral Angle Mapping (SAM) classification model was used to produce a map of IEW. The SAM model achieved an overall accuracy of 92.68 %. The study found that IEW affected approximately 2.90 % or 99.59 km² of the territory in Srem. The obtained maps can be used by responsible water management agencies to prevent and control excessive inland water.
Rocznik
Strony
343--355
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
autor
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
autor
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
autor
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
  • Faculty of Agriculture, University of Novi Sad, Trg D. Obradovica 8, 21000 Novi Sad, Serbia, phone 00381214853408, fax 0038121455713
Bibliografia
  • [1] Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, et al. Global flood risk under climate change. Nature Climate Change. 2013;3(9):816-21. DOI: 10.1038/nclimate1911.
  • [2] Zemunac R, Savic R, Blagojevic B, Benka P, Bezdan A, Salvai A. Assessment of surface and groundwater quality for irrigation purposes in the Danube-Tisa-Danube Hydrosystem Area (Serbia). Environ Monitoring Assess. 2021;193:519. DOI: 10.1007/s10661-021-09294-6.
  • [3] Ilić M, Mutavdžic B, Srđević Z, Srđević B. Irrigation water fitness assessment based on Bayesian Network and FAO Guidelines. Irrigation Drainage. 2022;71(3):665-75. DOI: 10.1002/ird.2676.
  • [4] Salvai A, Grabic J, Josimov-Dundjerski J, Zemunac R, Antonic N, Savic R, et al. Trend analysis of water quality parameters in the middle part of the Danube flow in Serbia. Ecol Chem Eng S. 2022;29(1):51-63. DOI: 10.2478/eces-2022-0006.
  • [5] Srđević B, Srđević Z, Ilić M, Ždero S. Group model for evaluating the importance of Ramsar Sites in Vojvodina Province of Serbia. Environ Development Sust. 2021;23(7):10892-909. DOI: 10.1007/s10668-020-01093-2.
  • [6] van Leeuwen B, Mezősi G, Tobak Z, Szatmári J, Barta K. Identification of inland excess water floodings using an artificial neural network. Carpathian J Earth Environ Sci. 2012;7(4):173-80. Available from: https://www.cjees.ro/viewIssue.php?issueId=19.
  • [7] van Leeuwen B, Tobak Z, Kovács F. Sentinel-1 and -2 based near real time inland excess water mapping for optimized water management. Sustainability. 2020;12(7):2854. DOI: 10.3390/su12072854.
  • [8] Kajári B, Bozán C, van Leeuwen B. Monitoring of inland excess water inundations using machine learning algorithms. Land. 2023;12(1):36. DOI: 10.3390/land12010036.
  • [9] Sar N, Chatterjee S, Das Adhikari M. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai River Basin, India. Modeling Earth System Environ. 2015;1(4):31. DOI: 10.1007/s40808-015-0039-9.
  • [10] Kaushik S, Dhote PR, Thakur PK, Aggarwal SP. Assessing the impact of canal network on surface waterlogging using remote sensing datasets in Rohtak District, Haryana. Int Archives Photogrammetry Remote Sensing Spatial Information Sci. 2018;42(5):261-6. DOI: 10.5194/isprs-archives-XLII-5-261-2018.
  • [11] Namikawa LM, Körting TS, Castejon EF. Water body extraction from RapidEye images: An automated methodology based on hue component of color transformation from RGB to HSV model. Revista Brasileira de Cartografia. 2016;68(6):1097-111. DOI:10.14393/rbcv68n6-44495.
  • [12] Nashait AF, Jasim OZ, Ismail MM, Saad FH. Integrating various satellite images for identification of the water bodies through using machine learning: A case study of Salah Adin, Iraq. IOP Conf Ser: Materials Sci Eng. 2020;737(1):012223. DOI: 10.1088/1757-899X/737/1/012223.
  • [13] van Leeuwen B, Tobak Z. Operational identification of inland excess water floods using satellite imagery. In: Vogler R, Car A, Strobl J, Griesebner G, editors. GI_Forum 2014 - Geospatial Innovation for Society. Salzburg, Austria: Herbert Wichmann Verlag. VDE Verlag GMBH; 2014;12-5. DOI: 10.1553/giscience2014s12.
  • [14] Marjanovic M, Kovacevic M, Bajat B, Vozenilek V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geology. 2011;123(3):225-34. DOI: 10.1016/j.enggeo.2011.09.006.
  • [15] Oz N, Bayram T, Uzun HI. Prediction of water quality in Riva River Watershed. Ecol Chem Eng S. 2019;26(4):727-42. DOI: 10.1515/eces-2019-0051.
  • [16] Revuelta-Acosta JD, Guerrero-Luis ES, Terrazas-Rodriguez JE, Gomez-Rodriguez C, Alcalá Perea G. Application of remote sensing tools to assess the land use and land cover change in Coatzacoalcos, Veracruz, Mexico. Appl Sci. 2022;12(4):1882. DOI: 10.3390/app12041882.
  • [17] Mirsanjari MM, Suziedelyte Visockiene J, Mohammadyari F, Zarandian A. Modelling of expansion changes of Vilnius City area and impacts on landscape patterns using an artificial neural network. Ecol Chem Eng S. 2021;28(3):429-47. DOI: 10.2478/eces-2021-0029.
  • [18] Demirkesen AC, Evrendilek F, Berberoglu S, Kilic S. Coastal flood risk analysis using Landsat-7 ETM+ Imagery and SRTM DEM: A case study of Izmir, Turkey. Environ Monitoring Assess. 2007;131(1):293-300. DOI: 10.1007/s10661-006-9476-2.
  • [19] Szántó G, Mucsi L, van Leeuwen B. Application of self-organizing neural networks for the delineation of excess water areas. J Environ Geography. 2008;1(3-4):15-20. DOI: 10.14232/jengeo-2008-43860.
  • [20] Arseni M, Roșu A, Bocăneală C, Constantin DE, Georgescu LP. Flood hazard monitoring using GIS and remote sensing observations. Carpathian J Earth Environ Sci. 2017;12(2):329-34. Available from: www.cjees.ro/viewTopic.php?topicld=107.
  • [21] Kapović Solomun M, Ferreira CSS, Zupanc V, Ristić R, Drobnjak A, Kalantari Z. Flood legislation and land policy framework of EU and non-EU countries in Southern Europe. Wiley Interdisciplinary Reviews. Water. 2022;9(1):e1566. DOI: 10.1002/wat2.1566.
  • [22] Mihailović B, Cvijanović D, Milojević I, Filipović M. The role of irrigation in development of agriculture in Srem district. Economics Agricult. 2014;61(4):989-1004. DOI: 10.5937/ekoPolj1404989M.
  • [23] Republic Hydrometeorological Service of Serbia (HIDMET) Meteorological Yearbook - Climatological Data, 1949-2021. Republic Hydrometeorological Service of Serbia. Belgrade (in Serbian). Available from: www.hidmet.gov.rs.
  • [24] Planet Team 2022. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. Available from: https://api.planet.com.
  • [25] Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD. Land-cover change detection using multi-temporal MODIS NDVI Data. Remote Sensing Environ. 2006;105(2):142-54. DOI: 10.1016/j.rse.2006.06.018.
  • [26] Congedo L. Semi-automatic classification plugin: A Python tool for the download and processing of remote sensing images in QGIS. J Open Source Software. 2021;6(64):3172. DOI: 10.21105/joss.03172.
  • [27] Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. Good practices for estimating area and assessing accuracy of land change. Remote Sensing Environ. 2014;148:42-57. DOI: 10.1016/j.rse.2014.02.015.
  • [28] Olofsson P, Foody GM, Stehman SV, Woodcock CE. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing Environ. 2013;129:122-31. DOI: 10.1016/j.rse.2012.10.031.
  • [29] Rosenfield GH, Fitzpatrick-Lins K. A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Eng Remote Sensing. 1986;52(2):223-7. Available from: https://pubs.usgs.gov/publication/70014667.
  • [30] Tharwat A. Classification assessment methods. Appl Computing Informatics. 2021;17(1):168-92. DOI: 10.1016/j.aci.2018.08.003.
  • [31] Thomlinson JR, Bolstad PV, Cohen WB. Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sensing Environ. 1999;70(1):16-28. DOI: 10.1016/S0034-4257(99)00055-3.
  • [32] Liu Y, Lu S, Lu X, Wang Z, Chen C, He H. Classification of urban hyperspectral remote sensing imagery based on optimized spectral angle mapping. J Indian Soc Remote Sensing. 2019;47(2):289-94. DOI: 10.1007/s12524-018-0929-1.
  • [33] Talukdar S, Singha P, Mahato S, Shahfahad, Pal S, Liou Y, et al. Land-use land-cover classification by machine learning classifiers for satellite observations - A review. Remote Sensing. 2020;12(7):1135. DOI: 10.3390/rs12071135.
  • [34] Kruse FA, Lefkof AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, et al. The spectral image processing system (SIPS) - Interactive visualization and analysis of imaging spectrometer data. Remote Sensing Environ. 1993;44(2-3):145-63. DOI: 10.1016/0034-4257(93)90013-N.
  • [35] Vranešević M, Belić S, Kolaković S, Kadović S, Bezdan A. Estimating suitability of localities for biotechnical measures on drainage system application in Vojvodina. Irrigation Drainage. 2017;66(1):129-40. DOI: 10.1002/ird.2024.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d324c3b-11bc-47eb-8e77-9656d091bc63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.