PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An appraisal on the soil wetting water retention characteristic curve determined from mini disk infiltrometer and sensor measurements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Direct determination of wetting water retention characteristics curve (WWRCC) is time-consuming, needs destructive sampling and invasive sensor placement, and, at times, is difficult to measure due to rapid wetting. The objective of this study was to critically analyze the use of a handy mini disk infiltrometer’s (MDI’s) measurements for indirect determination of WWRCC parameters (α, n) and saturated hydraulic conductivity (Ks). The α, n, and Ks were estimated by considering cumulative infiltration (CI), volumetric water content (VWC), and soil water potential (SWP) measurements, divided into 17 subcases and 924 inverse simulations. The inverse simulation was improved by considering measured final VWC as an additional input if α, n, and Ks were estimated from MDI measurements. The simulated CI, VWC, and SWP compared well with the measured results with low root mean square error (RMSE) (10–5 m3 for CI,≤ 10–2 m3 /m3 for VWC, and 10–1 m for SWP). The mean values determined from all the statistically comparable cases for two soil textures, loam and silt loam, were, respectively, α (m−1) equal to 1.43 and 0.41, and n equal to 1.5 and 1.61. The WWRCC developed using the mean α and n values was close to the measured curves and significantly different from the texture-based pedo transfer function (PTF) estimation. Furthermore, the Ks values estimated from the inverse analysis of MDI measurements were comparable with reference falling head permeameter measurements for both the soils. The observations from this study demonstrated that MDI is a reliable, non-invasive, and non-destructive method for quick indirect estimation of α, n, and Ks.
Czasopismo
Rocznik
Strony
961--982
Opis fizyczny
Bibliogr. 61 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
  • Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
Bibliografia
  • 1. Alagna V, Bagarello V, Di Prima S, Iovino M (2016) Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrol Process 30(2):263–275. https://doi.org/10.1002/hyp.10607
  • 2. Albadri WM, Noor MJM, Alhani IJ (2018) The importance of incorporating hysteresis effect in determining shear strength of unsaturated soil. AIP Conf Proc. https://doi.org/10.1063/1.5062633
  • 3. Angulo-Jaramillo R, Bagarello V, Iovino M, Lassabatere L (2016) Infiltration measurements for soil hydraulic characterization. Springer
  • 4. Ankeny MD, Ahmed M, Kaspar TC, Horton R (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Sci Soc Am J 55(2):467–470. https://doi.org/10.2136/sssaj1991.03615995005500020028x
  • 5. ASTM D (2010) Standard test methods for specific gravity of soil solids by water pycnometer, D854
  • 6. ASTM. 2011. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM Standard D2487–11. American Society for Testing and Materials, West Conshohocken, Pa. doi:10.1520/ D2487–11.
  • 7. Bordoloi S, Yamsani SK, Garg A, Sekharan S (2019) Critical assessment of infiltration measurements for soils with varying fine content using a mini disk infiltrometer. J Test Eval 47(2):868–888. https://doi.org/10.1520/JTE20170328
  • 8. Bordoloi S, Shaikh J, Horák J, Garg A, Sreedeep S, Sarmah AK (2021) Role of biochar as a cover material in landfill waste disposal system: perspective on unsaturated hydraulic properties. Adv Chem Pollut, Environ Manage Protect 7:93–106. https://doi.org/10.1016/BS.APMP.2021.08.004
  • 9. Bruckler L, Bertuzzi P, Angulo-Jaramillo R, Ruy S (2002) Testing an infiltration method for estimating soil hydraulic properties in the laboratory. Soil Sci Soc Am J 66(2):384–395. https://doi.org/10.2136/sssaj2002.3840
  • 10. Cai W, Bordoloi S, Ng CWW, Sarmah AK (2022) Influence of pore fluid salinity on shrinkage and water retention characteristics of biochar amended kaolin for landfill liner application. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.156493
  • 11. Carlier E (2007) A probabilistic investigation of infiltration in the vadose zone: proposal for a new formula of infiltration rate. Hydrol Process: Int J 21(21):2845–2849
  • 12. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769. https://doi.org/10.1029/WR024i005p00755
  • 13. Cauchy A (1847) Méthode générale pour la résolution des systemes d’équations simultanées. Comp Rend Sci Paris 25(1847):536–538
  • 14. Dohnal M, Dusek J, Vogel T (2010) Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci Soc Am J 74(3):804–811. https://doi.org/10.2136/sssaj2009.0099
  • 15. Fodor N, Sándor R, Orfanus T, Lichner L, Rajkai K (2011) Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165(1):60–68. https://doi.org/10.1016/j.geoderma.2011.07.004
  • 16. Gadi VK, Tang Y-R, Das A, Monga C, Garg A, Berretta C, Sahoo L (2017) Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. CATENA 155:20–29. https://doi.org/10.1016/J.CATENA.2017.02.024
  • 17. Gadi VK, Bordoloi S, Garg A, Sekharan S (2022) Demonstration and validation of a biosensing technique to interpret suction induced in vegetated soil. Indian Geotech J 52(3):537–541. https://doi.org/10.1007/S40098-021-00590-Z/TABLES/1
  • 18. Ghosh B, Pekkat S (2019) A critical evaluation of measurement induced variability in infiltration characteristics for a river sub-catchment. Measure J Int Measure Confeder 132:47–59. https://doi.org/10.1016/j.measurement.2018.09.018
  • 19. Ghosh B, Pekkat S, Yamsani SK (2019) Evaluation of infiltrometers and permeameters for measuring hydraulic conductivity. Adv Civil Eng Mater 8(1):308–321. https://doi.org/10.1520/ACEM20180056
  • 20. Gordillo-Rivero AJ, García-Moreno J, Jordán A, Zavala LM, Granja-Martins FM (2014) Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrol Process 28(24):5832–5843. https://doi.org/10.1002/hyp.10072
  • 21. Gupt CB, Bordoloi S, Bhatlu MN, Sekharan S (2021) Hydraulic conductivity variation in compacted bentonite–fly ash mixes under constant-volume and free-swelling flow conditions. Can Geotech J 25:1–18. https://doi.org/10.1139/CGJ-2021-0239
  • 22. Homolák M, Capuliak J, Pichler V, Lichner L (2009) Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64(3):600–604. https://doi.org/10.2478/s11756-009-0088-5
  • 23. Huang L, Zhang P, Hu Y, Zhao Y (2015) Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine. Glob Ecol Conserv 4:255–263. https://doi.org/10.1016/j.gecco.2015.07.006
  • 24. Hunter AE, Chau HW, Si BC (2011) Impact of tension infiltrometer disc size on measured soil water repellency index. Can J Soil Sci 91(1):77–81. https://doi.org/10.4141/CJSS10033
  • 25. Kool JB, Parker JC (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour Res 23(1):105–114. https://doi.org/10.1029/WR023i001p00105
  • 26. Kool JB, Parker JC, Van Genuchten MT (1985) Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. theory and numerical studies. Soil Sci Soc Am J 49(6):1348–1354
  • 27. Kumar S, Sekhar M, Reddy DV, Mohan Kumar MS (2010) Estimation of soil hydraulic properties and their uncertainty: comparison between laboratory and field experiment. Hydrol Process 24(23):3426–3435
  • 28. Latorre B, Moret-Fernández D (2019) Simultaneous estimation of the soil hydraulic conductivity and the van Genuchten water retention parameters from an upward infiltration experiment. J Hydrol 572:461–469. https://doi.org/10.1016/j.jhydrol.2019.03.011
  • 29. Lewis SA, Wu JQ, Robichaud PR (2006) Assessing burn severity and comparing soil water repellency, Hayman Fire Colorado. Hydrol Process 20(1):1–16. https://doi.org/10.1002/hyp.5880
  • 30. Lichner L, Hallett P, Feeney D, Ďugová O, Šír M, Tesař M (2007) Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62(5):537–541. https://doi.org/10.2478/S11756-007-0106-4
  • 31. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441
  • 32. Milatz M, Törzs T, Nikooee E, Hassanizadeh SM, Grabe J (2018) Theoretical and experimental investigations on the role of transient effects in the water retention behaviour of unsaturated granular soils. Geomech Energy Environ 15:54–64. https://doi.org/10.1016/j.gete.2018.02.003
  • 33. Moret-Fernández D, Latorre B, Peña-Sancho C, Ghezzehei TA (2016) A modified multiple tension upward infiltration method to estimate the soil hydraulic properties. Hydrol Process 30(17):2991–3003. https://doi.org/10.1002/hyp.10827
  • 34. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. https://doi.org/10.1029/WR012i003p00513
  • 35. Naik AP, Ghosh B, Pekkat S (2019) Estimating soil hydraulic properties using mini disk infiltrometer. ISH J Hydraulic Eng 25(1):62–70. https://doi.org/10.1080/09715010.2018.1471363
  • 36. Nakhaei M, Šimůnek J (2014) Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J Hydrol Hydromech 62(1):7–15. https://doi.org/10.2478/johh-2014-0008
  • 37. Ramos TB, Gonçalves MC, Martins JC, Van Genuchten MT, Pires FP (2006) Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data. Vadose Zone J 5(2):684–696. https://doi.org/10.2136/vzj2005.0076
  • 38. Rashid NSA, Askari M, Tanaka T, Simunek J, van Genuchten MT (2015) Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma. https://doi.org/10.1016/j.geoderma.2014.12.003
  • 39. Ronayne MJ, Houghton TB, Stednick JD (2012) Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till. J Hydrol. https://doi.org/10.1016/j.jhydrol.2012.06.036
  • 40. Saha A, Sekharan S, Manna U (2020) Evaluation of capacitance sensor for suction measurement in Silty Clay Loam. Geotech Geol Eng 38(4):4319–4331. https://doi.org/10.1007/s10706-020-01297-3
  • 41. Schaap MG, Leij FJ, Van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176
  • 42. Schiesser WE (2012) The numerical method of lines: integration of partial differential equations. Elsevier
  • 43. Schwartz RC, Evett SR (2003) Conjunctive use of tension infiltrometry and time-domain reflectometry for inverse estimation of soil hydraulic properties. Vadose Zone J 2(4):530–538. https://doi.org/10.2113/2.4.530
  • 44. Shaikh J, Yamsani SK, Sekharan S, Rakesh RR (2019) Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Adv Civil Eng Mater 8(1):322–335. https://doi.org/10.1520/ACEM20180091
  • 45. Shao M, Horton R (1998) Integral method for estimating soil hydraulic properties. Soil Sci Soc Am J 62(3):585–592. https://doi.org/10.2136/sssaj1998.03615995006200030005x
  • 46. Šimůnek J, van Genuchten MT (1996) Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour Res 32(9):2683–2696. https://doi.org/10.1029/96WR01525
  • 47. Šimůnek J, Van Genuchten MT (1997) Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data. Soil Sci 162(6):383–398. https://doi.org/10.1097/00010694-199706000-00001
  • 48. Šimůnek J, Angulo-Jaramillo R, Schaap MG, Vandervaere J-P, Van Genuchten MT (1998) Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data. Geoderma 86(1–2):61–81. https://doi.org/10.1016/S0016-7061(98)00035-4
  • 49. Šimůnek J, Wendroth O, Van Genuchten MT (1999) Estimating unsaturated soil hydraulic properties from laboratory tension disc infiltrometer experiments. Water Resour Res 35(10):2965–2979. https://doi.org/10.1029/1999WR900179
  • 50. Šimůnek J, Van Genuchten MT, Šejna M (2012) The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media. Tech Manual. 25:871
  • 51. Šimunek J, Van Genuchten MT, Šejna M (2012) HYDRUS: Model use, calibration, and validation. Trans ASABE 55(4):1263–1274
  • 52. Šimůnek J, Šejna M, Van Genuchten MT (2018) New features of version 3 of the HYDRUS (2D/3D) computer software package. J Hydrol Hydromech 66(2):133–142
  • 53. Sreedeep S, Singh D (2006) Nonlinear curve-fitting procedures for developing soil-water characteristic curves. Geotech Test J 29(5):409–418. https://doi.org/10.1520/GTJ14104
  • 54. Touma J, Vachaud G, Parlange J-Y (1984) Air and water flow in a sealed, ponded vertical soil column: experiment and model. Soil Sci 137(3):181–187. https://doi.org/10.1097/00010694-198403000-00008
  • 55. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1. Soil Sci Soc Am J 44(5):892. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • 56. Ventrella D, Losavio N, Vonella AV, Leij FJ (2005) Estimating hydraulic conductivity of a fine-textured soil using tension infiltrometry. Geoderma 124(3–4):267–277. https://doi.org/10.1016/j.geoderma.2004.05.005
  • 57. Wang D, Yates SR, Ernst FF (1998) Determining soil hydraulic properties using tension infiltrometers, time domain reflectometry, and tensiometers. Soil Sci Soc Am J 62(2):318–325. https://doi.org/10.2136/SSSAJ1998.03615995006200020004X
  • 58. Warrick AW (1992) Models for disc infiltrometers. Water Resour Res 28(5):1319–1327. https://doi.org/10.1029/92WR00149
  • 59. Wooding RA (1968) Steady infiltration from a shallow circular pond. Water Resour Res 4(6):1259–1273. https://doi.org/10.1029/WR004i006p01259
  • 60. Young MH, Karagunduz A, Šimůnek J, Pennell KD (2002) A modified upward infiltration method for characterizing soil hydraulic properties. Soil Sci Soc Am J 66(1):57–64. https://doi.org/10.2136/sssaj2002.5700
  • 61. Zhang R (1997) Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci Soc Am J 61(4):1024–1030. https://doi.org/10.2136/sssaj1997.03615995006100040005x
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d2d422b-04d9-485b-a9bb-ba97fcb487e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.