PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterizing Sawdust Fractional Composition from Oak Parquet Woodworking for Briquette and Pellet Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The particle size distribution of woodworking residues influences the quality of the biofuels made of these materials. Hence, it is essential to investigate the fractional composition of raw materials for pellet production. Tested materials originated from ten parquet manufacturing facilities located in western Poland. The research material consisted of uncontaminated oak (Quercus spp.) wood particles. The tested material had a moisture content ranging from 8.8% to 11.4% and a density of 210.7 ± 1.79 kg/m3. A sieve analysis method segregated the tested material into four distinct size fractions (<1.0 mm, 1.0-2.5 mm, 2.5-5.0 mm, and >5 mm). The average mass shares in these fractions were 53.72 ±0.51%, 35.14 ±0.27%, 9.59 ±0.36%, and 1.55% ±0.11%, respectively. The particle size distributions of wood particles generated in all the facilities demonstrate remarkable similarity. No substantial differences were observed in terms of tilt angle and calorific value. Factors such as variations in raw material species, geographical origins, density, humidity, and technological processes appear to have minimal influence on the sieve-size distributions of the generated sawdust. All these solid wood processing residues can undergo processing into high-quality solid biofuel production.
Twórcy
  • Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
autor
  • Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Institute of BioEconomy, National Research Council (CNR-IBE), Via G. Caproni 8, 50145 Florence, Italy
autor
  • Faculty of Forestry and Wood Technology, Department of Woodworking and Fundamentals of Machine Design, Poznań University of Life Sciences, ul. 38/42 Wojska Polskiego, 60-637 Poznań, Poland
Bibliografia
  • 1 Warguła Ł., Kukla M., Wieczorek B., Krawiec P. Energy Consumption of the Wood Size Reduction Processes with Employment of a Low-Power Machines with Various Cutting Mechanisms. Renew. Energy 2022; 181, 630–639. doi: 10.1016/j. renene.2021.09.039.
  • 2. ISO 17225-1:2021 Solid Biofuels – Fuel Specifications and Classes – Part 1: General Requirements (17225-1:2014).
  • 3. Ross R.J. Wood Handbook: Wood as an Engineering Material. Wood Eng. Mater. Dep. Agric. For. Serv. For. Prod. Lab. Madison WI USA 2021, 534.
  • 4. Bergström D., Israelsson S., Öhman M., Dahlqvist S.-A., Gref R., Boman C., Wästerlund I. Effects of Raw Material Particle Size Distribution on the Characteristics of Scots Pine Sawdust Fuel Pellets. Fuel Process. Technol. 2008; 89: 1324–1329. doi: 10.1016/j.fuproc.2008.06.001.
  • 5. Relova I., Vignote S., León M.A., Ambrosio Y. Optimisation of the Manufacturing Variables of Saw- dust Pellets from the Bark of Pinus Caribaea Morelet: Particle Size, Moisture and Pressure. Biomass Bioenergy 2009; 33: 1351–1357. doi: 10.1016/j. biombioe.2009.05.005.
  • 6. Zepeda-Cepeda C.O., Goche-Télles J.R., Palacios-Mendoza C., Moreno-Anguiano O., Núñez-Retana V.D., Heya M.N., Carrillo-Parra A. Effect of Sawdust Particle Size on Physical, Mechanical, and Energetic Properties of Pinus Durangensis Briquettes. Appl. Sci. 2021; 11, 3805. doi: 10.3390/app11093805.
  • 7. Forero-Nuñez C.A., Jochum J., Sierra F.E. Effect of Particle Size and Addition of Cocoa Pod Husk on the Properties of Sawdust and Coal Pellets. Ing. E Investig. 2015; 35: 17–23.
  • 8. Anggraeni S., Girsang G.C.S., Nandiyanto A.B.D., Bilad, M.R. Effects of Particle Size and Composition of Sawdust/Carbon from Rice Husk on the Briquette Performance. J. Eng. Sci. Technol. 2021; 16: 2298–2311.
  • 9. Whittaker C., Shield, I. Factors Affecting Wood, En- ergy Grass and Straw Pellet Durability – A Review. Renew. Sustain. Energy Rev. 2017; 71: 1–11. doi: 10.1016/j.rser.2016.12.119.
  • 10. Sakkampang C., Wongwuttanasatian T. Study of Ratio of Energy Consumption and Gained Energy during Briquetting Process for Glycerin-Biomass Briquette Fuel. Fuel 2014; 115: 186–189. doi: 10.1016/j.fuel.2013.07.023.
  • 11. Bembenek M. Exploring Efficiencies: Examining the Possibility of Decreasing the Size of the Briquettes Used as the Batch in the Electric Arc Furnace Dust Processing Line. Sustainability 2020; 12: 6393.
  • 12. Bembenek M., Buczak M., Baiul K. Modelling of the Fine-Grained Materials Briquetting Process in a Roller Press with the Discrete Element Method. Materials 2022; 15: 4901.
  • 13. Bembenek M., Buczak M. The Fine-Grained Material Flow Visualization of the Saddle-Shape Briquetting in the Roller Press Using Computer Image Analysis. J. Flow Vis. Image Process. 2021; 28.
  • 14. Dziewiątkowski M., Szpica D. Comparative Study of Diesel and Compressed Natural Gas (CNG) Engine. Transp. Means - Proc. Int. Conf. 2021; 1: 5–9.
  • 15. Szpica D. The Influence of Selected Adjustment Parameters on the Operation of LPG Vapor Phase Pulse Injectors. J. Nat. Gas Sci. Eng. 2016; 34: 1127–1136.
  • 16. Jamberová Z., Vančo M., Barcík Š., Gaff M., Čekovská H., Kubš J., Kaplan L. Influence of Processing Factors and Species of Wood on Granulometric Composition of Juvenile Poplar Wood Chips. BioResources 2016; 11: 9572–9583. doi: 10.15376/ biores.11.4.9572-9583.
  • 17. Kvietková M., Barcík Š., Aláč P., Impact of Angle Geometry of Tool on Granulometric Composition of Particles during the Flat Milling of Thermally Modified Beech. Wood Res. 2015; 60: 137–146.
  • 18. Banski A., Kminia, R. Influence of the Thickness of Removed Layer on Granulometric Composition of Chips When Milling Oak Blanks on the Cnc Machining Center. Trieskové Beztrieskové Obrábanie Dreva Chip Chipless Woodwork. 2018; 11: 23–30.
  • 19. Kminiak R., Banski A., Granulometric Analysis of Chips from Beech, Oak and Spruce Woodturning Blanks Produced in the Milling Process Using 5-Axial Cnc Machining Center. Acta Fac. Xylologiae Zvolen 2019. doi: 10.17423/afx.2019.61.1.07.
  • 20. Dzurenda L., Orlowski K., Wasielewski R., Granulometric Analysis and Separation Options of Dry Sawdust Exhausted from Narrow-Kerf Frame Sawing Machines. Drv. Ind. 2005; 56: 55–60.
  • 21. Fujimoto K., Takano T., Okumura S., Difference in Mass Concentration of Airborne Dust during Circular Sawing of Five Wood-Based Materials. J. Wood Sci. 2011; 57: 149–154.
  • 22. Očkajová A., Banski A. Characteristic of Dust from Wood Sanding Process. Wood Mach. Process. Qual. Qaste Charact. 2009; 116–141.
  • 23. Ratnasingam J., Scholz F., Natthondan V., Graham M. Dust-Generation Characteristics of Hard- woods during Sanding Processes. Eur. J. Wood Wood Prod. 2011; 69: 127–131. doi:10.1007/ s00107-009-0409-y.
  • 24. Welling I., Lehtimäki M., Rautio S., Lähde T., Enbom S., Hynynen P., Hämeri K. Wood Dust Particle and Mass Concentrations and Filtration Efficiency in Sanding of Wood Materials. J. Occup. Environ. Hyg. 2008; 6: 90–98. doi: 10.1080/15459620802623073.
  • 25. Sydor M., Mirski R., Stuper-Szablewska K., Rogoziński T. Efficiency of Machine Sanding of Wood. Appl. Sci.-Basel 2021; 6: 2860 doi: 10.3390/ app11062860.
  • 26. Rogoziński T., Wilkowski J., Górski J., Czarniak P., Podziewski P., Szymanowski K. Dust Creation in CNC Drilling of Wood Composites. BioResources 2015; 10: 3657–3665. doi: 10.15376/ biores.10.2.3657-3665.
  • 27. Kminiak R., Kučerka M., Kristak L., Reh R., Antov P., Očkajová A., Rogoziński T., Pędzik M. Granulometric Characterization of Wood Dust Emission from CNC Machining of Natural Wood and Medium Density Fiberboard. Forests 2021; 12: 1039. doi: 10.3390/f12081039.
  • 28. Koleda P., Koleda P., Hrčková M., Júda M., Hortobágyi Á. Experimental Granulometric Characterization of Wood Particles from CNC Machining of Chipboard. Appl. Sci. 2023; 13.
  • 29. Kminiak R., Orlowski K.A., Dzurenda L., Chuchala D., Banski A. Effect of Thermal Treatment of Birch Wood by Saturated Water Vapor on Granulometric Composition of Chips from Sawing and Millng Processes from the Point of View of Its Processing to Composites. Appl. Sci. 2020; 10: 7545. doi:10.3390/app10217545.
  • 30. Dzurenda L., Orlowski K., Grzeskiewicz M. Effect of Thermal Modification of Oak Wood on Sawdust Granularity. Drv. Ind. 2010; 61: 89–94.
  • 31. Baran S., Teul, I. Wood Dust: An Occupational Hazard Which Increases the Risk of Respiratory Disease. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2007; 58 Suppl 5, 43–50.
  • 32. Mračková E., Schmidtová J., Marková I., Jaďuďová J., Tureková I., Hitka M. Fire Parameters of Spruce (Picea Abies Karst. (L.)) Dust Layer from Different Wood Technologies Slovak Case Study. Appl. Sci. 2022; 12.
  • 33. Núñez-Retana V.D., Rosales-Serna R., Prieto-Ruíz J.Á., Wehenkel C., Carrillo-Parra A. Improving the Physical, Mechanical and Energetic Properties of Quercus Spp. Wood Pellets by Adding Pine Sawdust. PeerJ 2020; 8, e9766, doi: 10.7717/peerj.9766.
  • 34. Warguła Ł., Kukla M. The Properties of Particles Produced from Waste Plywood by Shredding in a Single-Shaft Shredder. Wood Res. 2020; 65: 771–784.
  • 35. Rabajczyk A., Zielecka M., Małozięć D. Hazards Resulting from the Burning Wood Impregnated with Selected Chemical Compounds. Appl. Sci. 2020; 10: 6093. doi: 10.3390/app10176093.
  • 36. Wasielewski R., Bałazińska M. Energy recovery from waste in the aspect of electricity and heat qualifications as coming from renewable energy sources and participation in the system of emissions trading. Ecol. Eng. Environ. Technol. 2017, 18, 170–178, doi: 10.12912/23920629/76899.
  • 37. Król D. Thermal Destruction of Hazardous Waste -Copper and Lead Emissions. Arch Waste Mana Envr Prot 2008; 7: 43–50.
  • 38. Očkajová A., Banski A., Rogoziński T. Tilt Angle of Wood Dust. Ann. Wars. Univ. Life Sci. – SGGW For. Wood Technol. 2023; 37–42.
  • 39. Wróblewska E. Determination of the Heat of Combustion and Calculation of the Calorific Value of Solid Fuels (Original Text in Polish: Wyznaczenie Ciepła Spalania i Obliczanie Wartości Opałowej Paliw Stałych). Politech. Wroc. Kated. Tech. Ciepl. W9K51 Instr. Ćwiczeń Nr 12, 2015.
  • 40. Očkajová A., Beljo Lučić R., Čavlović A., Terenòvá J. Reduction of Dustiness in Sawing Wood by Universal Circular Saw. Drv. Ind. 2006; 57: 119–126.
  • 41. Wilczyński D., Berdychowski M., Talaśka K., Wojtkowiak D. Experimental and Numerical Analysis of the Effect of Compaction Conditions on Briquette Properties. Fuel 2021; 288, #119613. doi: 10.1016/j. fuel.2020.119613.
  • 42. Quiroga G., Castrillón L., Fernández-Nava Y., Marañón E. Physico-Chemical Analysis and Calorific Values of Poultry Manure. Waste Manag. 2010; 30: 880–884. doi: 10.1016/j.wasman.2009.12.016.
  • 43. Lunguleasa A., Spirchez C., Olarescu A.M. Calorific Characteristics of Larch (Larix Decidua) and Oak (Quercus Robur) Pellets Realized from Native and Torrefied Sawdust. Forests 2022; 13: 361, doi: 10.3390/f13020361.
  • 44. Sydor M., Majka J., Hanincová L., Kučerka M., Kminiak R., Krišťák Ľ., Pędzik M., Očkajová A., Rogoziński T. Fine Dust after Sanding Untreated and Thermally Modified Spruce, Oak, and Meranti Wood. Eur. J. Wood Wood Prod. 2023. doi: 10.1007/ s00107-023-01971-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d24a27c-bca0-4cc1-bfab-656c09697ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.