PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Prediction of coking dynamics for wet coal charge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A one-dimensional transient mathematical model describing thermal and flow phenomena during coal coking in an oven chamber was studied in the paper. It also accounts for heat conduction in the ceramic oven wall when assuming a constant temperature at the heating channel side. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. The histories of temperature, gas evolution and internal pressure were presented and analysed. The theoretical predictions of temperature change in the centre plane of the coke oven were compared with industrialscale measurements. Both, the experimental data and obtained numerical results show that moisture content determines the coking process dynamics, lagging the temperature increase above the water steam evaporation temperature and in consequence the total coking time. The phenomenon of internal pressure generation in the context of overlapping effects of simultaneously occurring coal transitions – devolatilisation and coal permeability decrease under plastic stage – was also discussed.
Rocznik
Strony
291--303
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk
autor
  • Institute for Chemical Processing of Coal, Zamkowa 1, 41-803 Zabrze
Bibliografia
  • 1. Adesanya B.A., Pham H.N., 1995. Mathematical modelling of devolatilization of large coal particles in a convective environment. Fuel, 74, 896-902. DOI: 10.1016/0016-2361(95)00014-3.
  • 2. Alvarez R., Pis J.J., Diez M.A., Barriocanal C., Menendez J.A., Casal M.D., Parra J.B., 1996. Carbonization of wet and preheated coal. Effect on coke quality and its relation with textural properties. J. Anal. Appl. Pyr., 38, 119-130. DOI: 10.1016/S0165-2370(96)00947-3.
  • 3. Atkinson B., Merrick D., 1983. Mathematical models of the thermal decomposition of coal: 4. Heat transfer and temperature profiles in a coke-oven charge. Fuel, 62, 553-561. DOI: 10.1016/0016-2361(83)90225-9.
  • 4. Barr P.V., Osinski E.J., Brimacombe J.K., Khan M.A., Readyhough P.J., 1994. Mathematical model for tall coke oven battery. Part 3. Integrated model and its application. Ironmaking Steelmaking, 21, 44-55.
  • 5. Barriocanal C., Hayes D., Patrick J.W., Walker A., 1998. A laboratory study of the mechanism of coking pressure generation. Fuel, 77, 729-733. DOI: 10.1016/S0016-2361(97)00242-1.
  • 6. Casal M.D., Diaz-Faes E., Alvarez R., Diez M.A., Barriocanal C., 2006. Influence of the permeability of the plastic layer on coking pressure. Fuel, 85, 281-288. DOI: 10.1016/j fuel.2005.06.009. IChPW, 2007. Int. Tech. Report, IChPW Zabrze.
  • 7. Jenkins D.R., 2001. Plastic layer permeability estimation using a model of gas pressure in a coke oven. Fuel, 80, 2057-2065. DOI: 10.1016/S0016-2361(01)00074-6.
  • 8. Jin K., Feng Y., Zhang X., Wang M., Yang J., Ma X., 2013. Simulation of transport phenomena in coke oven with staging combustion. App. Therm. Eng., 58, 354-362. DOI: 10.1016/j.applthermaleng.2013.04.056.
  • 9. Karcz A., Strugała A., 2001. Coking pressure. Part IV. The mechanism of coking pressure phenomenon. Karbo, 7-8, 265-273 (in Polish).
  • 10. Kasperczyk J., Simonis W., 1971. Die Hochtemperaturverkokung von Steinkohle im Horizontalkammerofen bei Schuttbertrieb als Temperatur-Zeit-Reaktion. Gluckauf-Forschungsh, 32, 23-34.
  • 11. Merrick D., 1983a. Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter. Fuel, 62, 534-539. DOI: 10.1016/0016-2361(83)90222-3.
  • 12. Merrick D., 1983b. Mathematical models of the thermal decomposition of coal: 2. Specific heats and heats of reaction. Fuel, 62, 540-546. DOI: 10.1016/0016-2361(83)90223-5.
  • 13. Merrick D., 1983c. Mathematical models of the thermal decomposition of coal: 3. Density, porosity and contr action behavior. Fuel, 62, 547-552. DOI: 10.1016/0016-2361(83)90224-7.
  • 14. Mertas B., Sobolewski A., Różycki G., 2013. Investigations on plastic coal layer gas permeability as a factor influencing the volume of generated expansion pressure. Karbo, 2, 163-171 (in Polish).
  • 15. Miura K., Inoue K., Takatani K., Nishioka K., 1991. Analysis of steam flow in coke oven chamber by test coke ovens and a two-dimensional mathematical model. ISIJ International, 31, 458-467. DOI: 10.2355/isijinternational.31.458.
  • 16. Nomura S., Arima T., 2000. Coke shrinkage and coking pressure during carbonization in a coke oven. Fuel, 79, 1603-1610. DOI: 10.1016/S0016-2361(00)00018-1.
  • 17. Osinski E.J., Barr P.V., Brimacombe J.K., 1993a. Mathematical model for tall coke oven battery. Part 1. Development of thermal model for heat transfer within coke oven charge. Ironmaking Steelmaking, 20, 350-361.
  • 18. Osinski E.J., Barr P.V., Brimacombe J.K., 1993b. Mathematical model for tall coke oven battery. Part 2. Calculation of gas flow and related phenomena for coke oven charge. Ironmaking Steelmaking, 20, 453-467.
  • 19. Polesek-Karczewska S., 2008. Comparative analysis of devolatilization kinetics of various biomass and fossil fuels. Tech. Report, 141, IMP PAN Gdańsk (in Polish).
  • 20. Polesek-Karczewska S., Kardaś D., Ciżmiński P., Mertas B., 2015. Three phase transient model of wet coal pyrolysis. J. Anal. Appl. Pyrol., 113, 259-265. DOI: 10.1016/j.jaap.2015.01.022.
  • 21. Postrzednik S., 1994. Solid fuel carbonization – method of determination, basic relations. Karbo, Energochemia, Ekologia, 39, 220-228 (in Polish).
  • 22. Słupik Ł., Fic A., Buliński Z., Nowak A.J., Kosyrczyk L., Łabojko G., 2015, CFD model of the coal carbonization process. Fuel, 150, 415-424. DOI: 10.1016/j fuel.2015.02.044.
  • 23. Strugała A., 2000. Empirical relationships for the determination of true density of coal chars. Fuel, 79, 743-753. DOI: 10.1016/S0016-2361(99)00201-X.
  • 24. Strugała A., 2002a. Empirical relationships for the determination of yield and true density of chars produced within the temperature range of coal plasticity. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 18, 37-62.
  • 25. Strugała A., 2002b. Changes of porosity during carbonization of bituminous coals: Effects due to pores with radii less than 2500 nm. Fuel, 81, 1119-1130. DOI: 10.1016/S0016-2361(02)00034-0.
  • 26. Sultanguzin I.A., 2007. Combustion of Heating Gases in Coke Battery, Coke Chem. 50, 55-62. DOI: 10.3103/S1068364X07030039.
  • 27. Tomeczek J., Palugniok H., 1996. Specific heat capacity and enthalpy of coal pyrolysis at elevated temperatures. Fuel, 9, 1089-1093. DOI: 10.1016/S0016-2361(96)00067-1.
  • 28. Trefny F., 1951. Wege zur Erzielung des gunstigsten Ausbringens an Kohlenvertstoffen bei der Verkonung unter besonderer Berucksischtigung der Ausgleichvorlage. Gluckauf, 87, 23/24, 537-551.
  • 29. Witos J., 1977. Determination of a non-stationary temperature field in a coke oven chamber by means of direct measurements and numerical calculations. PhD Thesis, AGH University of Science and Technology (in Polish).
  • 30. Voller V.R., Cross M., Merrick D., 1983. Mathematical models of the thermal decomposition of coal: 5. Distribution of gas flow in a coke oven charge. Fuel, 62, 562-566. DOI: 10.1016/0016-2361(83)90226-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d18d741-9d84-45ea-8ae4-777966372202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.