Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of the work was the preparation of thin composite layers from PVP polymer doped by ZnO nanoparticles using the spin coating method and the analysis of the applied reinforcing phase on the morphology and optical properties of obtained composites. Design/methodology/approach: To analyse the morphology of thin coatings a technique of surface topography imaging using the atomic force microscopy (AFM) was applied. Analysis of the optical properties was conducted using absorbance spectrum in function of wavelength for all produced thin coatings using UV-Vis spectroscopy. Findings: AFM results show that mass concentration of ZnO nanoparticles of 10% in a solution of PVP/EtOH polymers has a meaningful influence on the morphology of the surface of the PVP/ZnO composite coatings. Using obtained absorbance spectra, the width of the band gap of the manufactured composite coatings were determined which were compared with a band gap values of pure polymer and used reinforcing phase. Practical implications: The analysis of the values of the energy band gap of the manufactured materials showed that both for pure polymer and composite coatings values of energy band gap are similar approx. 4 eV at the same time decrease the degree of absorption of electromagnetic radiation caused by the increasing concentration of the reinforcing phase, which indicates the broad possibilities of application of this type of the material.
Wydawca
Rocznik
Tom
Strony
5--11
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
- Center for Nanotechnology, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] M. Nowak, T. Tański, P. Szperlich, W. Matysiak, M. Kpiska, D. Stró, B. Toro, Using of sonochemically prepared SbSI for electrospun nanofibers, Ultrasonics Sonochemistry 3 (2017) 544-552.
- [2] X. Fan, J. Wang, Z. Wu, G. Li, Core–shell structured FeSiAl/SiO2 particles and Fe3Si/Al2O3 soft magnetic composite cores with tunable insulating layer thicknesses, Materials Science and Engineering B 201 (2015) 79-86.
- [3] M.C.S. Ribeiro, S.P.B. Sousa, P.R.O. Nóvoa, An Investigation on Fire and Flexural Mechanical Behaviors of Nano and Micro Polyester Composites Filled with SiO2 and Al2O3 Particles, Materials Today: Proceedings 2/1(2015) 8-19.
- [4] M. Sroka, A. Zieliński, Matrix replica method and artificial neural networks as a component of the evaluation of materials for power plants, Archives of Materials Science and Engineering 58/2 (2012) 130136. [5] J. Dobrzański, M. Sroka, Computer aided classification of internal damages the chromiummolybdenum steels after creep service, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 143-146.
- [6] A. Zieliński, J. Dobrzański, M. Sroka, Changes in the structure of VM12 steel after being exposed to creep conditions, Archives of Materials Science and Engineering 49/2 (2011) 103-111.
- [7] T. Tański, W. Matysiak, Ł. Krzemiński, Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers, Materials and Manufacturing Processes (2016) 1-7, doi: 10.1080/ 10426914.2016.1257129.
- [8] P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, M. Bilewicz, Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles, Applied Surface Science (2017) (in press) doi: 10.1016/j.apsusc.2017.03.232.
- [9] T. Tański, W. Matysiak, Ł. Krzemiski, P. Jarka, K. Gołombek, Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods, Applied Surface Science (2017) (in press) doi: 10.1016/j.apsusc.2017.02.258.
- [10] W.J. Tseng, S. Kao, J.H. Hsieh, Photocatalytic and bactericidal activity of mesoporous TiO2-Ag nanocomposite particles, Ceramics International A 41/9 (2015) 10494-10500.
- [11] Z. Zou, C. Xie, S. Zhang, X. Yu, T. Zou, J. Li, Preparation and photocatalytic activity of TiO2/CeO2/Bi2O3 composite for Rhodamine B degradation under visible light irradiation, Journal of Alloys and Compounds 581/25 (2013) 385-391.
- [12] W. Matysiak, T. Tański, M. Zaborowska, Analysis of the Optical Properties of PVP/ZnO Composite Nanofibers, In: Properties and Characterization of Modern Materials, Springer Singapore, 2017, 43-49.
- [13] Y. Chen, X. Li, X. Li, J. Wang, Z. Tang, UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures, Sensors and Actuators B: Chemical 232 (2016) 158-164.
- [14] Y. Yang, J. Zhao, C. Cui, Y. Zhang, H. Hu, L. Xu, J. Pan, C. Li, W. Tang, Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency, Electrochimica Acta 196 (2016) 348-356.
- [15] F. Leiter, H. Zhou, F. Henecker, A. Hofstaetter, D.M. Hofmann, B.K. Meyer, Magnetic resonance experiments on the green emission in undoped ZnO crystals, Physica B 908 (2001) 308-310.
- [16] S. Gulia, R. Kakkar, ZnO quantum dots for biomedical applications, Advanced Materials Letters 4/12 (2013) 876-887.
- [17] O.J. Ilegbusi, H. Song, R. Chakrabarti, Biocompatibility and Conductometric Property of Sol-Gel Derived ZnO/PVP Nanocomposite Biosensor Film, Journal of Bionic Engineering – Supplement 7 (2010) S30-S35.
- [18] T. Du, H. Song, O.J. Ilegbusi, Sol–gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor, Materials Science and Engineering 27/3 (2007) 414-420.
- [19] E. Gharibshahi, E. Saion, Influence of dose on particle size and optical properties of colloidal platinum nanoparticles, International Journal of Molecular Sciences 13/11 (2012) 14723-14741.
- [20] T. Tański, W. Matysiak, B. Hajduk, Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology 7 (2016)1141-1155.
- [21] E.R. Shaaban, M. El-Hagary, M. Emam-Ismail, S.H. Moustafa, A. Adel, Optical characterization of polycrystalline ZnSe1−xTex thin films using variable angle spectroscopic ellipsometry and spectrophotmetery techniques, Materials Science in Semiconductor Processing 39 (2015) 735-741.
- [22] L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material, Carbon 47 (2009) 3346-3354.
- [23] J.S. Im, M.I. Kim, Y.S. Lee, Preparation of PANbased electrospun nanofiber webs containing TiO2 for photocatalytic degradation, Materials Letters 62/21-22 (2008) 3652-3655, doi: https://doi.org/10.1016/ j.matlet.2008.04.019.
- [24] S. Klubnuan, S. Suwanboon, P. Amornpitoksuk, Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method, Optical Materials 53 (2016) 134-141, doi: https://doi.org/10.1016/j.optmat.2016.01.045.
- [25] X. Chang, Z. Li, X. Zhai, S. Sun, D. Gu, L. Dong, Y. Yin, Y. Zhu, Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts, Materials and Design 98 (2016) 324-332, doi: https://doi.org/ 10.1016/j.matdes.2016.03.027.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d17a934-c354-41c1-b6ab-3702e80e687c