PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FE model for linear-elastic mixed mode loading: estimation of SIFs and crack propagation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element analysis combined with the concepts of linear elastic fracture mechanics provides a practical and convenient means to study the fracture and crack growth of materials. The onset criterion of crack propagation is based on the stress intensity factor, which is the most important parameter that must be accurately estimated and facilitated by the singular element. The displacement extrapolation technique is employed to obtain the SIFs at crack tip. In this paper, two different crack growth criteria and the respective crack paths prediction for several test cases are compared between the circumferential stress criterion and the strain energy density criterion. Several examples are presented to compare each criterion and to show the robustness of the numerical schemes.
Rocznik
Strony
373--383
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanical Engineering Department, Laboratory of Materials and Reactive Systems, City Larbi Ben Mhidi, Algeria
autor
  • University of Lille, Mechanics Laboratory of Lille, Ecole Polytech’Lille, France
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanical Engineering Department, Laboratory of Materials and Reactive Systems, City Larbi Ben Mhidi, Algeria
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanical Engineering Department, Laboratory of Materials and Reactive Systems, City Larbi Ben Mhidi, Algeria
Bibliografia
  • 1. Alshoaibi A., Ariffin A.K., 2006, Finite element simulation of stress intensity factors in elasticplastic crack growth, Journal of Zhejiang University Science A, 7, 1336-1342
  • 2. Andersen M.R.,1998, Fatigue crack initiation and growth in ship structures, Ph.D. Dissertation, Technical University of Denmark
  • 3. Azocar D., Elgueta M., Rivara M.C., 2010, Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement, Advances in Engineering Software, 41, 111-119
  • 4. Babuska I., Melenk J.M., 1997, The partition of unity method, Computer Methods in Applied Mechanics and Engineering, 40, 727-758
  • 5. Baouch D., 1998, Validation num´erique des param`etres de fissuration en ´elastoplasticit´e, Th`ese de doctorat de l’Universit´e Blaise Pascal Clermont II, France
  • 6. Barsoum R.S., 1977, Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements, International Journal for Numerical Methods in Engineering, 11, 85-98
  • 7. Belytschko T., Lu Y.Y., Gu L., 1994, Element free Galerkin methods, International Journal for Numerical Methods in Engineering, 37, 229-256
  • 8. Bocca P., Carpinteri A., Valente S., 1991, Mixed mode fracture of concrete, International Journal of Solids Structures, 27, 1139-1153
  • 9. Bouchard P.O., 2000, Contribution `a la mod´elisation num´erique en m´ecanique de la rupture et structures multi-mat´eriaux, Th`ese de doctorat de l’Ecole Nationale Sup´erieure des Mines, Paris
  • 10. Bouchard P.O., Bay F., Chastel Y., 2003, Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria, Computer Methods in Applied Mechanics and Engineering, 192, 3887-3908
  • 11. Boulenouar A., Benseddiq N., Mazari M., 2013a, Strain energy density prediction of crack propagation for 2D linear elastic materials, Theoretical and Applied Fracture Mechanics, article in press
  • 12. Boulenouar A., Benseddiq N., Mazari M., 2013b, Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis, Engineering, Technology and Applied Science Research, 3, 5, 506-510
  • 13. Boulenouar A., Benseddiq N., Mazari M., Miloudi A., 2012, Two-dimensional estimation of SIFs and numerical modeling of crack propagation: Comparison between the circumferential stress criterion and the strain energy density criterion, JM’EMP08 EMP, Bordj El Bahri, Algeria
  • 14. Carter B.J., Wawrzynek P.A., Ingraffea A.R., 2000, Automated 3D crack growth simulation, Gallagher Special Issue of International Journal for Numerical Methods in Engineering, 47, 229-253
  • 15. Combescure A., Gravouil A., Gr´egoire D., R´ethor´e J., 2008, X-FEM a good candida te for energy conservation in simulation of brittle dynamic crack propagation, Computer Methods in Applied Mechanics and Engineering, 197, 5, 309-318
  • 16. De Borst R., Remmers J.C., Needleman A., 2006, Mesh-independent discrete numerical representations of cohesive zone models, Engineering Fracture Mechanics, 73, 160-177
  • 17. Dias-da-Costa D., Alfaiate J., Sluys L.J., Jlio E., 2009, A discrete strong discontinuity approach, Engineering Fracture Mechanics, 76, 9, 1176-120
  • 18. Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 85, 519-527
  • 19. Ewalds H., Wanhill R., 1989, Fracture Mechanics, New York: Edward Arnold
  • 20. Griffith A.A., 1920, The phenomena of rupture and flow in solid, Philosophical Transactions of the Royal Society of London. Series A, 221, 163-197
  • 21. Hern´andez-Gómez L.H., Sauceda-Meza I., Urriolagoitia-Calderón G., Balankin A.S., Susarrey O., 2004, Evaluation of crack initiation angle under mixed mode loading at diverse strain rates, Theoretical and Applied Fracture Mechanics, 42, 53-61
  • 22. Inglis C.E., 1913, Stresses in a plate due to the presence of cracks and sharp corners, Proceedings of Institution Naval Architects, 60, 219-241
  • 23. Irwin G.R., Washington D.C., 1957, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 361-364
  • 24. Lebaillif D., Recho N., 2007, Brittle and ductile crack propagation using automatic finite element crack box technique, Engineering Fracture Mechanics, 74, 1810-1824
  • 25. Miranda A.C.O, Meggiolaro M.A., Castro J.T.P., Martha L.F., Bittencourt T.N., 2003, Fatigue life and crack predictions in generic 2D structural components, Engineering Fracture Mechanics, 70, 1259-1279
  • 26. M¨oes N., Dolbow J. Belytschko T., 1999, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46, 131-150
  • 27. Oliver J., Huespe A.E., Blanco S., Linero D.L., 2006, Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach, Computer Methods in Applied Mechanics and Engineering, 195, 52, 7093-7114
  • 28. Phongthanapanich S., Dechaumphai P., 2004, Adaptive Delaunay triangulation with objectoriented programming for crack propagation analysis, Finite Element in Analysis and Design, 40, 1753-1771
  • 29. Rashid M.M., 1998, The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis, Computer Methods in Applied Mechanics and Engineering, 154, 133-150
  • 30. Rice J.R., 1968, A path independent integral and the approximate analysis of strain concentrations by notches and cracks, Journal of Applied Mechanics, 379-386
  • 31. Sih G.C., 1974, Strain-energy-density factor applied to mixed-mode crack problems, International Journal of Fracture, 10, 3, 305-321
  • 32. Tran V.X., Geniaut S., 2012, Development and industrial applications of X-FEM axisymmetric model for fracture mechanics, Engineering Fracture Mechanics, 82, 135-157
  • 33. Valentini M., Sekov S.K., Bigoni D., Movchan A.B., 1999, Crack propagation in a Brittle elastic material with defects, Transactions de the ASME, 66
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d112909-143e-4460-84e7-2f3bc73c4976
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.