PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive fuzzy-sliding mode controller for trajectory tracking control of quad-rotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the design of an adaptive-fuzzy-PD-Sliding mode controller to achieve stabilization of a quadrotor aircraft in the presence of wind disturbance. Firstly, the dynamic system modeling is carried out using Euler-Lagrange formalism. Then, an adaptive PD-sliding mode control system with an integral-operation switching surface is investigated for quadrotor desired trajectory tracking. Finally, an adaptive fuzzy-PD-sliding mode controller is proposed to achieve control objectives and system stabilization where the fuzzy logic system used to dynamically control parameters settings of the PD-sliding mode equivalent control law. Effectiveness and robustness of the proposed control scheme is verified through simulation results taking into account external disturbances. The simulation results of a quadrotor aircraft control with the proposed controller demonstrate the high performance during flight such as null tracking error and robustness in the presence of external disturbances.
Twórcy
  • Smart-Grids and Renewable Energies Laboratory, University of Tahri Mohammed-Béchar, Algeria
  • Smart-Grids and Renewable Energies Laboratory, University of Tahri Mohammed-Béchar, Algeria
  • Smart-Grids and Renewable Energies Laboratory, University of Tahri Mohammed-Béchar, Algeria
Bibliografia
  • [1] P. Castillo, R. Lozano and A. Dzul, “Stabilization of a mini rotorcraft with four rotors”, IEEE Control Systems Magazine, vol. 25, no. 6, 2005, 45–55, DOI: 10.1109/MCS.2005.1550152.
  • [2] J.-J. Xiong and E.-H. Zheng, “Position and attitude tracking control for a quadrotor UAV”, ISA Transactions, vol. 53, no. 3, 2014, 725–731, DOI: 10.1016/j.isatra.2014.01.004.
  • [3] P. Castillo, A. Dzul and R. Lozano, “Real-time stabilization and tracking of a four-rotor mini rotorcraft”, IEEE Transactions on Control Systems Technology, vol. 12, no. 4, 2004, 510–516, OI: 10.1109/TCST.2004.825052.
  • [4] T. Hamel, R. Mahony, R. Lozano and J. Ostrowski, “Dynamic Modelling and Configuration Stabilization for an X4-Flyer”, IFAC Proceedings Volumes, vol. 35, no. 1, 2002, 217–222, DOI: 10.3182/20020721-6-ES-1901.00848.
  • [5] T. Madani and A. Benallegue, “Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique”. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA, 2006, 1515–1520, DOI: 10.1109/CDC.2006.377548.
  • [6] T. Madani and A. Benallegue, “Backstepping Control for a Quadrotor Helicopter”. In: 2006 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, 3255–3260, DOI: 10.1109/IROS.2006.282433.
  • [7] H. Khebbache and M. Tadjine, “Robust Fuzzy Backstepping Sliding Mode Controller For a Quadrotor Unmanned Aerial Vehicle”, Journal of Control Engineering and Applied Informatics, vol. 15, no. 2, 2013, 3–11.
  • [8] S. Nadda and A. Swarup, “On adaptive sliding mode control for improved quadrotor tracking”, ournal of Vibration and Control, vol. 24, no. 14, 2018, 3219–3230, DOI: 10.1177/1077546317703541.
  • [9] R. Bonna and J. F. Camino, “Trajectory Tracking Control of a Quadrotor Using Feedback Linearization”. In: V. Steffen, Jr, D. A. Rade, W. M. Bessa (eds.), DINAME 2015 – Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, ABCM, Natal, RN, Brazil, 2015.
  • [10] Z. Fang, Z. Zhi, L. Jun and W. Jian, “Feedback linearization and continuous sliding mode control for a quadrotor UAV”. In: 2008 27th Chinese Control Conference, Kunming, Yunnan, China, 2008, 349–353, DOI: 10.1109/CHICC.2008.4605334.
  • [11] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor”. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 2247–2252, DOI: 10.1109/ROBOT.2005.1570447.
  • [12] M. A. Mohd Basri, A. R. Husain and K. A. Danapalasingam, “Enhanced Backstepping Controller Design with Application to Autonomous Quadrotor Unmanned Aerial Vehicle”, Journal of Intelligent & Robotic Systems, vol. 79, no. 2, 2015, 295–321, DOI: 10.1007/s10846-014-0072-3.
  • [13] K. M. Zemalache, L. Beji and H. Maaref, “Control of a drone: study and analysis of the robustness”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 2, no. 1, 2008, 33–42.
  • [14] X. Gong, Z.-C. Hou, C.-J. Zhao, Y. Bai and Y.-T. Tian, “Adaptive backstepping sliding mode trajectory tracking control for a quad-rotor”, International Journal of Automation and Computing, vol. 9, no. 5, 2012, 555–560, DOI: 10.1007/s11633-012-0679-4.
  • [15] K. Z. Meguenni, M. Tahar, M. Benhadria and Y. Bestaoui, “Fuzzy integral sliding mode based on backstepping control synthesis for an autonomous helicopter”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 227, no. 5, 2013, 751–765, DOI: 10.1177/0954410012442119.
  • [16] H. Bouadi, A. Aoudjif and M. Guenifi, “Adaptive flight control for quadrotor UAV in the presence of external disturbances”. In: 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 2015, 1–6, DOI: 10.1109/ICMSAO.2015.7152250.
  • [17] B. Whitehead and S. Bieniawski, “Model Reference Adaptive Control of a Quadrotor UAV”. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
  • [18] T. X. Dinh and K. K. Ahn, “Adaptive tracking control of a quadrotor unmanned vehicle”, International Journal of Precision Engineering and Manufacturing, vol. 18, no. 2, 2017, 163–173, DOI: 10.1007/s12541-017-0022-7.
  • [19] B. E. Demir, R. Bayir and F. Duran, “Real-time trajectory tracking of an unmanned aerial vehicle using a self-tuning fuzzy proportional integral derivative controller”, International Journal of Micro Air Vehicles, vol. 8, no. 4, 2016, 252–268, DOI: 10.1177/1756829316675882.
  • [20] C. Zhang, S. Li and S. Ding, “Finite-time output feedback stabilization and control for a quadrotor mini-aircraft”, Kybernetika, vol. 48, no. 2, 2012, 206–222.
  • [21] J.-E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, 1991.
  • [22] V. I. Utkin, “Sliding mode control design principles and applications to electric drives”, IEEE Transactions on Industrial Electronics, vol. 40, no. 1, 1993, 23–36, DOI: 10.1109/41.184818.
  • [23] G. A. Rustamov, A. T. Abdullaeva and I. A. Elchuev, “Realization of sliding motion in a nonlinear stabilization system based on the method of the Lyapunov function”, Automatic Control and Computer Sciences, vol. 43, no. 6, 2009, 336–341, DOI: 10.3103/S0146411609060078.
  • [24] P. K. Nandam and P. C. Sen, “Control laws for sliding mode speed control of variable speed drives”, International Journal of Control, vol. 56, no. 5, 1992, 1167–1186, DOI: 10.1080/00207179208934362.
  • [25] Y. Li, K. C. Ng, D. J. Murray-Smith, G. J. Gray and K. C. Sharman, “Genetic algorithm automated approach to the design of sliding mode control systems”, International Journal of Control, vol. 63, no. 4, 1996, 721–739, DOI: 10.1080/00207179608921865.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d0f6ade-a822-4f12-b6e1-2a50c9990ea4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.