Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aerodynamics of powerboats used in inshore powerboat racing has a significant impact on their performance. The aerodynamic drag forces generated on individual elements of this type of boats were tested. The solid model of the boat developed in the CAD software was used for the calculations. The computational grid was generated, as well as the boundary conditions and the turbulence model, were determined. On the basis of such assumptions, the numerical calculations were carried out using the CFD method. The results from the numerical simulations consist of a description of the velocity and pressure distribution around the tested object and identification of the drag force on the components of the powerboat with a description of the relationship between them. Additionally, the variation of the drag force as a function of speed in the range from 0 to 60 m/s was presented. The tests were performed for 5 values of the angle of attack of the boat to the surface of water in the range from 0° to 12°. The scope of the research allowed for the development of a drag force map depending on the defined parameters. The test results can be used to optimize the shape of the boat structure in order to reduce the aerodynamic drag generated on its individual elements.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
141--148
Opis fizyczny
Bibliogr. 23 poz., fig., tab.
Twórcy
autor
- Faculty of Aviation, Military University of Aviation, ul. Dywizjonu 303 35, 08-521 Dęblin, Poland
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Department of Electromechanic, Thermal Machinery and Shipbuilding, Sfax University, National Engineering School of Sfax, Route de l’Aéroport Km 0.5 BP 1169.3029 Sfax, Tunisia
Bibliografia
- 1. Abdul Manaf M., Mat S., Mansor S., Nasir M., Mat Lazim T., Wan Ali W., Wan Omar W., Mohd. Ali, Z., Abdul-Latif A., Abd. Wahid M., Dahalan M., Othman N. Wind Tunnel Experiment of UTM-LST Generic Light Aircraft Model with External Store, International Review of Mechanical Engineering, 12(3), 2018, 263-271.
- 2. Basheer Faraj M., Aftab S., Mustapha F., Ariffin M., Ahmad K. Numerical Studies on Heat Ventilation Air Conditioning (HVAC) System in Operation Theaters: a Review, International Review of Mechanical Engineering, 12(7), 2018, 635-641.
- 3. Belfkira Z., Mounir H., El Marjani A., Comparison of Experimental and Numerical Performances of a Wind Turbine Airfoil Using XFOIL and Computational Fluid Dynamics Simulation, International Review on Modelling and Simulations, 12(4), 2019, 212-221.
- 4. Benedict K., Kornev N., Meyer M., Ebert J. Complex mathematical model of the WIG motion including the take-off mode. Ocean Engineering, 29(3), 2002, 315-357.
- 5. Berrini E., Mourrain B., Roux Y., Durand M., Fontaine G. Geometric Modelling and Deformation for Shape Optimization of Ship Hulls and Appendages. Journal of Ship Research, 61(2), 2017, 91-106.
- 6. Czyż Z., Karpiński P., Łusiak T., Szczepanik T. Numerical analysis of the influence of particular autogyro parts on the aerodynamic forces. ITM Web of Conferences, 15(07008), 2017.
- 7. Czyż Z., Magryta P., Szlachetka M. Experimental investigation of the impact of flight speed on drag force in the autogyro model. Advances in Science and Technology. Research Journal, 9(26), 2015, 89-95.
- 8. Czyż Z., Stryczniewicz W. Investigation of aerodynamic interference in a multirotor by PIV method, Advances in Science and Technology. Research Journal, 12(1), 2018, 106-114.
- 9. Grm A. Mathematical Model For Riverboat Dynamics, Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 68(3), 2017, 25-35.
- 10. He J., Hu Y., Tang J., Xue S. Research on sail aerodynamics performance and sail-assisted ship stability. Journal of Wind Engineering and Industrial Aerodynamics, 146, 2015, 81-89.
- 11. Jalasabri J., Romli F. Computational Fluid Dynamics (CFD) Study on a Hybrid Airship Design, International Review of Mechanical Engineering, 11(8), 2017, 573-579.
- 12. Khoo B.C., Koe H.B. The hydrodynamics of the WIG (Wing-In-Ground) effect craft. 6th International Conference on Underwater System Technology: Theory and Applications (USYS), IEEE, 2016, 195-200.
- 13. Matveev K.I.. Modeling of longitudinal motions of a hydroplane boat. Ocean Engineering, 42, 2012, 1-6.
- 14. Muscari R., Dubbioso G., Viviani M., Di Mascio A.. Analysis of the asymmetric behavior of propeller–rudder system of twin screw ships by CFD. Ocean Engineering, 143, 2017, 269-281.
- 15. Neuberg O., Drimer N. Fatigue limit state design of fast boats, Marine Structures, 55, 2017, 17-36.
- 16. Pietrykowski K., Tulwin T. Aircraft Radial Engine CFD Cooling Model. SAE International Journal of Engines, 8(1), 2015, 82-88.
- 17. Prada Botia G., Valencia Ochoa G., Duarte Forero J. CFD Analysis of Hydraulic Performance in Small Centrifugal Pumps Operating with Slurry, International Review on Modelling and Simulations, 12(6), 2019, 364-372.
- 18. Sarkar P., Haan J.F., Design and Testing of ISUAABL Wind and Gust Tunnel, International Journal on Engineering Applications, 4 (1), 2016, 16-26.
- 19. Seeni A., Rajendran P. Numerical Validation of NACA 0009 Airfoil in Ultra-Low Reynolds Number Flows, 12(2), 2019, 83-92.
- 20.Syamsuar S., Djatmiko E., Wilson P., Subchan E. The flight performance criteria for adaptive control design during hydro planing and ground effect altitude of wing in surface effect craft, International Review of Aerospace Engineering, 6(5), 2013, 220-232.
- 21. Tarakka R., Salam N., Jalaluddin J., Ihsan M. Active Flow Control by Suction on Vehicle Models with Variations on Front Geometry, International Review of Mechanical Engineering 12(2), 2018, 128-134.
- 22. Wang J., Zou L., Wan D. CFD simulations of free running ship under course keeping control. Ocean engineering, 141, 2017, 450-464.
- 23. Yang W., Ying C., Yang Z. Aerodynamic study of WIG craft near curved ground. Journal of Hydrodynamics, Ser. B, 2(5), 2010, 371-376.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d0e8328-b359-4b38-8c42-bb05036a3bf9