PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iterative techniques with computer realization for initial value problems for Riemann-Liouville fractional differential equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is to suggest some algorithms and to use them in an appropriate computer environment to solve approximately the initial value problem for scalar nonlinear Riemann-Liouville fractional differential equations on a finite interval. The iterative schemes are based on appropriately defined lower and upper solutions to the given problem. A number of different cases depending on the type of lower and upper solutions are studied and various schemes for constructing successive approximations are provided. The suggested schemes are applied to some problems and their practical usefulness is illustrated.
Wydawca
Rocznik
Strony
21--47
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
autor
  • University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria
autor
  • University of Plovdiv Paisii Hilendarski, Plovdiv, Bulgaria
autor
  • School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
Bibliografia
  • [1] R. P. Agarwal and S. Hristova, Quasilinearization for initial value problems involving differential equations with “maxima”, Math. Comput. Modelling 55 (2012), no. 9-10, 2096-2105.
  • [2] R. P. Agarwal, S. Hristova, A. Golev and K. Stefanova, Monotone-iterative method for mixed boundary value problems for generalized difference equations with “maxima”, J. Appl. Math. Comput. 43 (2013), no. 1-2, 213-233.
  • [3] V. Antony Vijesh, R. Roy and G. Chandhini, A modified quasilinearization method for fractional differential equations and its applications, Appl. Math. Comput. 266 (2015), 687-697.
  • [4] Z. Bai, S. Zhang, S. Sun and C. Yin, Monotone iterative method for fractional differential equations, Electron. J. Differential Equations 2016 (2016), Paper No. 6.
  • [5] A. Cabada and J. J. Nieto, A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems, J. Math. Anal. Appl. 151 (1990), no. 1, 181-189.
  • [6] S. Das, Functional Fractional Calculus, 2nd ed., Springer, Berlin, 2011.
  • [7] G. V. S. R. Deekshitulu, Generalized monotone iterative technique for fractional R-L differential equations, Nonlinear Stud. 16 (2009), no. 1, 85-94.
  • [8] Z. Denton, Monotone method for Riemann-Liouville multi-order fractional differential systems, Opuscula Math. 36 (2016), no. 2, 189-206.
  • [9] Z. Denton, P. W. Ng and A. S. Vatsala, Quasilinearization method via lower and upper solutions for Riemann-Liouville fractional differential equations, Nonlinear Dyn. Syst. Theory 11 (2011), no. 3, 239-251.
  • [10] A. Golev, S. Hristova and A. Rahnev, An algorithm for approximate solving of differential equations with “maxima”, Comput. Math. Appl. 60 (2010), no. 10, 2771-2778.
  • [11] Z. He and X. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl. 48 (2004), no. 1-2, 73-84.
  • [12] S. G. Hristova and D. D. Ba˘ınov, Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential equations with “supremum”, J. Math. Anal. Appl. 172 (1993), no. 2, 339-352.
  • [13] T. Jankowski, Boundary value problems for first order differential equations of mixed type, Nonlinear Anal. 64 (2006), no. 9, 1984-1997.
  • [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
  • [15] C. Kou, H. Zhou and C. Li, Existence and continuation theorems of Riemann-Liouville type fractional differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22 (2012), no. 4, Article ID 1250077.
  • [16] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Monogr. Adv. Texts Surveys Pure Applied Math. 27, Pitman, Boston, 1985.
  • [17] V. Lakshmikantham, S. Leela and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Academic, Cambridge, 2009.
  • [18] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), no. 8, 2677-2682.
  • [19] F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal. 71 (2009), no. 12, 6093-6096.
  • [20] T. T. Pham, J. D. Ramírez and A. S. Vatsala, Generalized monotone method for Caputo fractional differential equation with applications to population models, Neural Parallel Sci. Comput. 20 (2012), no. 2, 119-132.
  • [21] I. Podlubny, Fractional Differential Equations. An introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Math. Sci. Eng. 198, Academic Press, San Diego, 1999.
  • [22] J. D. Ramírez and A. S. Vatsala, Monotone iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Math. 29 (2009), no. 3, 289-304.
  • [23] G. Wang, D. Baleanu and L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations, Fract. Calc. Appl. Anal. 15 (2012), no. 2, 244-252.
  • [24] G. Wang, W. Sudsutad, L. Zhang and J. Tariboon, Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type, Adv. Difference Equ. 2016 (2016), Paper No. 211.
  • [25] A. Yakar and H. Kutlay, Monotone iterative technique via initial time different coupled lower and upper solutions for fractional differential equations, Filomat 31 (2017), no. 4, 1031-1039.
  • [26] C. Yakar and A. Yakar, Monotone iterative technique with initial time difference for fractional differential equations, Hacet. J. Math. Stat. 40 (2011), no. 2, 331-340.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d0c6d52-798d-4631-b466-f43553de80fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.