PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of rolling bearing condition by means of a classification tree

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of evaluation of technical condition of rolling bearings on the basis of synchronously measured vibroacoustic symptoms and temperature. Rolling bearings were subjected to accelerated wear under controlled conditions. The values recorded in the study were sound pressure in a broad band including ultrasound (band up to 40 kHz), vibration acceleration in a radial direction, ultrasound in a band up to 100 kHz (processed into audible band), and bearing housing temperature. The identification of the condition was carried out with the help of a supervised learning system. Two conditions were distinguished: fit - examples were obtained in the initial phase of bearing operation in temperature stability conditions, and pre-failure - examples were obtained from fragments of recording just before the occurrence of bearing failure. The CART (Classification and Regression Tree) binary tree method was used to determine the technical condition and significance of particular diagnostic symptoms.
Rocznik
Strony
art. no. 2019204
Opis fizyczny
Bibliogr. 26 poz., 1 fot., 1 rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Management, Institute of Applied Mechanics, Poznan University of Technology
Bibliografia
  • 1. S. Szymaniec, Diagnostics of motor rolling bearings in conditions their industrial operating (in Polish), Maszyny Elektryczne, 74 (2006).
  • 2. N. Tandon, G. S. Yadava, K. M. Ramakrishna, A comparison of some condition monitoring techniques for the detection of defect in induction motor ball bearings, Mechanical Systems and Signal Processing, 21(1) (2007) 244 - 256.
  • 3. N. Tandon, A. Choudhury, A review of vibration and acoustic measurement methods for detection of defects in rolling elements bearings, Tribology International, 32(8) (1999) 469 - 480.
  • 4. Y. Yang, D. Yu. J. Cheng, A fault diagnosis approach for roller bearings based on IMF envelope spectrum and SVM, Measurement, 40(9) (2007) 943 - 950.
  • 5. Q. Sun, Y. Tang, Singularity analysis using continues wavelet transform for bearing fault diagnosis, Mechanical Systems and Signal Processing, 16(6) (2002) 1025 - 1041.
  • 6. P. McFadden, M. Toozhy, Application of synchronous averaging to vibration monitoring of rolling element bearings, Systems and Signal Processing, 14(6) (2000) 891 - 906.
  • 7. J. Wodecki, R. Zdunek, A. Wyłomańska, R. Zimroz, Local fault detectionof rolling element bearing components by spectrogram clustering with Semi-Binary NMF, Diagnostyka, 18(1) (2017) 3 - 8.
  • 8. M. Tabaszewski, Forecasting in multi-symptom condition monitoring of machines (in Polish), Wydawnictwo Politechniki Poznańskiej, 2010, pp. 153.
  • 9. Y. Lei, Z. He, Y. Zi, Application of an intelligent classification method to mechanical fault diagnosis, Expert Systems with Applications, 36(6) (August 2009) 9941 - 9948.
  • 10. F. Sunar Erbek, C. Özkan, M. Taberner, Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities, International Journal of Remote Sensing, 25(9) (2004) 1733 - 1748.
  • 11. H. Zhang, J. Li, Y. Huang, L. Zhang, A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6) (2014) 2056 - 2065.
  • 12. Abeer Badr El Din Ahmed, Ibrahim Sayed Elaraby, Data Mining: A prediction for Student's Performance Using Classification Method, World Journal of Computer Application and Technology, 2 (2014) 43 - 47.
  • 13. C. Gorges, K. Oztruk, R. Liebich, Impact detection using a machine learning approach and experimental road roughness classification, Mechanical Systems and Signal Processing, 117 (2019) 738 - 756.
  • 14. V. Leemans, H. Magein, M.-F. Destain, Defect segmentation on ‘Jonagold’ apples using colour vision and a Bayesian classification method, Computers and Electronics in Agriculture, 23(1) (1999) 43 - 53.
  • 15. T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification using machine learning, IEEE Communications Surveys & Tutorials, 10(4) (2008) 56 - 76.
  • 16. C. Sobie, C. Freitas, M. Nicolai, Simulation - driven machine learning: Bearing fault classification, Mechanical Systems and Signal Processing, 99 (2018) 403 - 419.
  • 17. A. Lahrache, M. Cocconcelli, R. Rubini, Anomaly detection in a cutting tool by KMeans clustering and Support Vector Machines, Diagnostyka, 18(3) (2017) 21 - 29.
  • 18. P. Potocnik, E. Govecar, Semi-supervised vibration - based classification and condition monitoring of compressors, Mechanical Systems and Signal Processing, 93 (2017) 51 - 65.
  • 19. M. Ruiz, L. E. Mujica, S. Alférez, L. Acho, Ch. Tutivén, Y. Vidal, J. Rodellar, F. Pozo, Wind turbine fault detection and classification by means of image texture analysis, Mechanical Systems and Signal Processing, 107 (2018) 149 - 167.
  • 20. F. Jia, Y. Lei, N. Lu, S. Xing, Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization, Mechanical Systems and Signal Processing, 110 (2018) 349 - 367.
  • 21. C. Mechefske, J. Mathew, Fault detection and diagnosis in low speed rolling element bearings Part II: The use of nearest neighbour classification, Mech. Syst. Sign. Process., 6(4) (1992) 309 - 316.
  • 22. J. Korbicz, J. M. Kościelny, Z. Kowalczuk, W. Cholewa (ed.), Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer Science & Business Media, (2012) pp. 922.
  • 23. D. T. Larose, Discovering Knowledge in Data. An Introduction to DATA MINING, John Wiley & Sons, Inc., (2005) pp. 227.
  • 24. D. T. Larose, Data Mining Methods and Models, John Wiley & Sons, Inc., 2006.
  • 25. O. Maimon, L. Rokach (ed.), Data Mining and Knowledge Discovery Handbook, Springer New York Dordrecht Heidelberg London, (2010) pp. 1285.
  • 26. A. Géron, Hands-On Machine Learning with Scikit-Learn and Tensor Flow, O'Reilly Media, (2017) pp. 574.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0d0725c3-882d-4b10-a7ab-7c6406bfc6c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.