PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Oil Degrading Bacteria from Oil-Contaminated Soil in the Northeastern Part of Jordan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioremediation aspects of crude oil-polluted fields can be achieved by isolating and identifying bacterial species from oil-contaminated soil. This allows for the selection of the most active isolates and the enhancement of the effectiveness of other bacteria. This project will be a base to use green technology for clean the oil contaminated soil in Jordan. This study involved the isolation and identification of oil-degrading microbes from soil samples contaminated with oil in the northeastern region of Jordan. The morphological and biochemical tests were used to characterize twenty-five bacterial isolates. Molecular identification of a universal primer 16S rDNA gene was used to identify bacterial isolates. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). The bacterial growth count (CFU/g) was between 1.06×105 and 2.80×1017. The identified bacterial genera included: Staphylococcus, Citrobacter, Lactobacillus, Alcaligin’s, Pseudomonas, Micrococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and, Microbacterium. The most species showed high growth rates on different types of hydrocarbons such as toluene, naphthalene, and hexane were Lactobacillus casei, Staphylococcus intermedius, Micrococcus luteus, Pseudomonas putida, Mycobacterium phlei, Corynebacterium xerosis. Soil sample M1A contains the highest levels of Fe, Cd , and Pb and Cu,. While M1C contains the highest levels of Fe and Mn. On the other hand, M2A, and M2C have the least levels of Mn and Fe. While M3C has the least level of Zn and Pb. our study conclude the bacterial isolates could be used for in situ and ex situ cleanup of oil-contaminated desert soil in northeastern part of Jordan.
Rocznik
Strony
306--320
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Al-Ahliyya Amman University, Amman 19111, Jordan
  • Al-Ahliyya Amman University, Amman 19111, Jordan
  • Al-Ahliyya Amman University, Amman 19111, Jordan
  • Al-Ahliyya Amman University, Amman 19111, Jordan
Bibliografia
  • 1. Adams D.D., Bawa M.D, Abdullahi U.Y., Wuyep P.A., Abba D. 2016. Molecular characterization and determination of bioremediation potentials of some bacteria isolated from spent oil contaminated soil. Mechanic Workshops in Kaduna Metropolis. World Applied Sciences Journal. 34(6), 750–759.
  • 2. Al-Deeb T.M., Malkawi H.I. 2009. Isolation, molecular and biochemical characterization of oil degrading bacteria from contaminated soil at an oil refinery. The Journal of Applied Research and Technology. 14, 1–2.
  • 3. AL-Saleh E.S., Obuekwe C. 2005. Inhibition of hydrocarbon bioremediation by lead in a crude oilcontaminated soil. International Biodeterioration and Biodegradation. 56, 1–7.
  • 4. Fadhil G.F., Al-Hadithi H.T., Al-Razzaq E.A. 2017. Bioremediation of polycyclic aromatic hydrocarbon by acinetobacter species isolated from ecological source. The Journal of Environmental Biology. 38(5), 785–789.
  • 5. Azubuike C.C., Chikere C.B., Okpokwasili G.C. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology. 32(11), 180–198.
  • 6. Cervantes, C., Corona, F.C. 1994. Copper resistance mechanisms in bacteria and fungi. Microbial Review.14, 121–138.
  • 7. Chachaty E., Saulnier P. 2000. Isolation chromosomal DNA from bacteria. from the nucleic acid protocol. Humana press. New Jersey. 29–32.
  • 8. Cubitto M.A., Moran A.C., Commendatore M., Chiarello M.N., Baldini M.D., Sineriz F. 2004. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation. 15, 281–287.
  • 9. Daane L.L., Harjono I., Zylastra G.J., and Haggblom M.M. 2001. Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading bacteria associated with rhizosphere of salt marsh plants. Applied and Environmental Microbiology. 67, 2683–2692.
  • 10. Das S., Pettersson B.M.F., Behra P.R.K., Ramesh M., Dasgupta S., Bhattacharya A., Kirsebom L. A. 2015. Characterization of three mycobacterium spp. with potential use in bioremediation by genome sequencing and comparative genomics. Genome Biology and Evolution. 7(7), 1871–1886.
  • 11. Katsivela E., Wray V., Pieper D.H., Wittich, R.M. 1999. Initial reactions in the biodegradation of 1-Chloro-4-Nitrobenzene by a newly isolated bacterium, Strain LW1. Applied and Environmental Microbiology. 65, 1405–1412.
  • 12. Kavamura, V.N., Esposito E. 2010. Biotechnology strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances. 28, 61–69. 13. Kuhn W., Gambino R., Al-Awaadhi N., Balba M.T., Dragum J. 1998. Growth of tomato plant in soil contaminated with Kuwait crude oil. Journal of Soil Contamination. 7, 801–806. 14. Edward U., Rogall T., Blocker H., Emde M., Bottger E.C. 1989. Isolation and direct complete nucleotide determination of entire genes: characterization of a gene coding for 16S ribosoma RNA. Nucleic Acids Research. 17, 7843–7853.
  • 15. Ejaz M., Zhao B., Wang X., Bashir S., Haider F.U., Aslam Z., Khan M.I., Shabaan M., Naveed M., Mustafa A. 2021. Isolation and characterization of oil-degrading enterobacter sp. from naturally hydrocarbon-contaminated soils and their potential use against the bioremediation of crude oil. Applied Sciences. 11, 3504.
  • 16. Emmanuel E., Usman A.A., Daraobong U., Queen O. 2017. Bioremediation potentials of some indigenous microorganisms isolated from auto mechanic workshops on irrigation water used in Lokoja Kogi State of Nigeria. Global Journal of Science Frontier Research. 16(5), 9–13.
  • 17. Ezekoye C.C., Amakoromo E.R., Ibiene A.A. 2017. Laboratory-based bioremediation of hydrocarbon polluted mangrove swamp soil in the Niger Delta using poultry wastes. Br. Microbiology Research Journal. 19(2), 1–14.
  • 18. Godambe T., Fulekar M. 2017. Bioremediation of petrochemical hydrocarbons (BTEX). Journal of Environmental Science and Pollution Research. 3(3), 189–199.
  • 19. Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., and Williams S.T. 1994. Bergey’s manual of determinative bacteriology (Ninth Ed.). Williams and Wilkins. USA. 10–753.
  • 20. Jamrah A., Al-Futaisi A., Hassan H., Al-Oraimi S. 2007. Petroleum contaminated soil in Oman: Evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete. Environmental Monitoring and Assessment. 124, 331–341.
  • 21. Kawo A.H., Bacha H.Y. 2016. Crude oil degradation by bacillus and Micrococcus species isolated from soil compost in Kano, Nigeria. BAJOPAS. 9(1), 108–117.
  • 22. Khanafer M., Al-Awadhi H., and Radwan S. 2017. Coliform Bacteria for Bioremediation of Waste Hydrocarbons. BioMed Research International. 1–8.
  • 23. Khawaja K.A., Abbas Z., Rehman S. 2016. Isolation and characterization of lytic phages TSE1-3 against Enterobacter cloacae. Open Life Sciences. 11, 287–292.
  • 24. Mateos L.M., Villadangos A.F., de la Rubia A.G., Mourenza A., Marcos-Pascual L., Letek M., Pedre B., Messens J., Gil J.A. 2017. The arsenic detoxification system in Corynebacteria: basis and application for bioremediation and redox control. Advances in Applied Microbiology. 99, 103–137.
  • 25. Nelson R.K., Kile B.M., Plata D.L., Sylva S.P., Xu L., Reddy C.M., Gaines R.B., Frysinger G. S., Reichenbach S.E. 2006. Tracking the weathering of an oil Spill with comprehensive two-dimensional gas chromatography. Environmental Forensics. 7, 33–44.
  • 26. Oaikhena E.E., Makaije D.B., Denwe S.D., Namadi M.M., Haroun A.A. 2016. Bioremediation potentials of heavy metal tolerant bacteria isolated from petroleum refinery effluent. Journal of Environmental Protection Science. 5(2), 29–34.
  • 27. Obi L.U., Atagana H.J., Adeleke R.A. 2016. Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus. 5, 1946–1959.
  • 28. Ojewumi M. E., Okeniyi J.O., Ikotun J.O., Okeniyi E.T., Ejemen V.A., Popoola A. 2018. Bioremediation: Data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data in brief. 19, 101–113.
  • 29. Phulpoto A.H., Qazi M.A., Mangi S., Ahmed S., Kanhar N.A. 2016. Biodegradation of oil-based paint by bacillus species monocultures isolated from the paint warehouses. The International Journal of Environmental Science and Technology. 13, 125–134.
  • 30. Rajasulochana P., Preethy V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water. Resource-Efficient Technologies. 2(4), 175–184.
  • 31. Ros M., Hernandez M.T., Garcia C. 2003. Bioremediation of soil degraded by sewage sludge: effects on soil properties and erosion losses. Environmental Management. 31, 741–747.
  • 32. Salam L.B., Ilori M.O., Amund O.O. 2015. Carbazole degradation in the soil microcosm by tropical bacterial strains. The Brazilian Journal of Microbiology. 46, 4.
  • 33. Sutherland, R.A. 2001. Comparison between nonresidual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. Applied Geochemistry. 17, 353–365.
  • 34. Thijs S., Beeck M.O.D., Beckers B., Truyens S., Stevens V., Van Hamm J.D., Weyens N., Vangronsveld J. 2017. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Frontiers in Microbiology. 8(494), 1–15.
  • 35. Wu Y., Mohanty A., Chia W. S., Caoa B. 2016. Inf luence of 3-chloroaniline on the biofilm lifestyle of Comamonas testosteroni and its implications on bioaugmentation. Applied and Environmental Microbiology. 82(14), 4401–4409.
  • 36. You Z.X.H., Zhang S., Kim H., Chiang P.C., Yun W., Zhang L., He M. 2018. Comparison of petroleum hydrocarbons degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Applied Sciences. 8, 2551–2560.
  • 37. Xu J.G., Johnson R.L. 1995. Root growth, Microbial activity and phosphatase activity in oil-contaminated, remediated, and uncontaminated soil planted to barley and field pea. Plant and Soil. 173, 3–10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cfff9da-24bb-4d8b-b32d-502a09f0081a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.