PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of metal matrix composites via powder metallurgy route: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Powder Metallurgy (P/M) is playing a vital role to synthesize variety of materials in the field of aerospace, automobile, ordnance, petroleum and petrochemical industries. P/M is an outstanding process to produce components with good mechanical and tribological properties such as strength, hardness, impact resistance and wear resistance. Recently metal matrix composites (MMC) replace conventional alloys because of their extraordinary characteristics. Currently Aluminium, Copper, Magnesium, Titanium and Iron have been used as matrix materials and materials like TiC, SiC, B4C, WC, Cr3C, TiO2, ZrO2, Gr, MoS2, and Si3N4 have been used as reinforcements to synthesize metal matrix composites. When compare P/M with other manufacturing methods, it offers ordered microstructure with improved physical, mechanical and tribological properties. From these, powder metallurgy could be commented as an extremely active and cost-effective method when compare with other process. This paper explains the selection suitable process parameters for synthesize MMCs using P/M technique. This paper made an attempt to present the mechanical and tribological properties of various composites fabricated through powder metallurgy technique.
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 31 poz., il. kolor., wykr.
Twórcy
  • Department of Mechanical Engineering, Jaya Engineering College, Mother Terasa College of Engineering and Technology, Pudukkottai, India
  • Department of Mechanical Engineering, Jaya Engineering College, Chendhuran College of Engineering and Technology, Pudukkottai, India
Bibliografia
  • [1] Ravichandran, M., Naveen Sait, A., Anandakrishnan, V.: Al–TiO2–Gr powder metallurgy hybrid composites with cold upset forging, Rare Metals, 1–11, 2014.
  • [2] Kandavel,T. K., Chandramouli, R.: Experimental Investigations on the Microstructure and Mechanical Properties of Sinter-Forged Cu and Mo Alloyed Low Alloy Steels, Int Journal of Advanced Manuf. Technology, 53–59, 2010.
  • [3] Iacoba, G., Ghicaa, V. G., Buzatua, M., Buzatua, T., Ionuţ Petrescua, M.: Studies on wear rate and micro-hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy, Composites: Part B, 603–611, 2014.
  • [4] Ravichandran, M., Naveen Sait, A., Anandakrishnan, V.:Workability Studies on Al+2.5%TiO2+Gr Powder Metallurgy Composite During Cold Upsetting, Mater. Res., 1489–1496, 2014.
  • [5] Jiang, Q. C.,Wang, H. Y., Ma, B. X.,Wang, Y., Zhao, F.: Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy, Journal of Alloys and Compounds, 177–181, 2005.
  • [6] Narayanasamy, R., Ramesh, T., Pandey, K. S.: Some aspects on workability of aluminium–iron powder metallurgy composite during cold upsetting, Materials Science and Engineering, 418–426, 2005.
  • [7] Ravichandran, M., Naveen Sait, A., Anandakrishnan, V.: synthesis and forming behavior of aluminium-based hybrid powder metallurgic composites, International Journal of Minerals, Metallurgy and Materials, 181–189, 2014.
  • [8] Battabya, M., Veleva, L., Balu, N.: Investigation of microstructure and mechanical properties of W–Y and W–Y2O3 materials fabricated by powder metallurgy method, Int. Journal of Refractory Metals and Hard Materials, 210–216, 2015.
  • [9] Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Kumar Iyer, V.: An investigation on flowability and compressibility of AA6061 100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying, Powder Technol., 70–82, 2010.
  • [10] Angelo, P. C., Subramanian, R.: Powder metallurgy science, Technology and Applications, PHI Learning Private Limited, 1-126, 2009.
  • [11] Antony Vasantha Kumar, C., Selwin Rajadurai, J.: Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy, Trans. Nonferrous Met. Soc. China, 63–73, 2016.
  • [12] Ravindran, P., Manisekar, K., Narayanasamy, R., Narayanasamy, P.: Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant, Ceramics International, 1169–1182, 2013.
  • [13] Jeyasimman, D., Sivasankaran, S., Sivaprasad, K., Narayanasamy, R., Kambali, R. S.: An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying, Materials and Design, 394–404, 2014.
  • [14] Ramesh, T., Prabakaran, M., Narayanasamy, R.: Workability Studies on Al-20%SiC Powder Metallurgy Composite During Cold Upsetting, Advances in Production Engineering & Management, 33–44, 2010.
  • [15] Narayanasamy, R., Ramesh, T., Pandey, K. S.: Some aspects on strain hardening behaviour in three dimensions of aluminium–iron powder metallurgy composite during cold upsetting, Materials and Design, 640–650, 2006.
  • [16] Ravichandran, M., Anandakrishnan, V.: Optimization of powder metallurgy parameters to attain maximum strength coefficient in Al–10 wt% MoO3 composite, J. Mater. Res, 2380–2387, 2015.
  • [17] Amaranan, S., Manonukul, A.: Study of Process Parameters in Conventional Powder Metallurgy of Silver, Journal of Metals, Materials and Minerals, 51–55, 2010.
  • [18] Rahimian, M., Parvin, N., Ehsani, N.: The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite, Materials and Design, 1031–1038, 2011.
  • [19] Umasankar, V.: Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing, Journal of Alloys and Compounds, 380–386, 2014.
  • [20] Abdizadeh, H., Ashuri, M., Tavakoli Moghadam, P., Nouribahadory, A., Reza Baharvandi, H.: Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method, Materials and Design, 4417–4423, 2011.
  • [21] Fathy, A., El-Kady, O., Mohammed, M. M. M.: Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China, 46–53, 2015.
  • [22] Erdemir, F., Canakci, A., Varol, T.: Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques, Trans. Nonferrous Met. Soc. China, 3569–3577, 2015.
  • [23] Jeyasimman, D. Narayanasamy, R., Ponalagusamy, R., Anandakrishnan, V., Kamaraj, M.: The effects of various reinforcements on dry sliding wear behavior of AA6061 nanocomposites, Materials and Design, 783–793, 2014.
  • [24] Ganesh, R., Ram Subbiah, Chandrasekaran, K.: Dry Sliding Wear Behavior of Powder Metallurgy Aluminium Matrix Composite, Materials Today: Proceedings, 1441–1449, 2015.
  • [25] Kanthavel, K., Sumesh, K. R., Saravanakumar, P.: Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy, Alexandria Engineering Journal, 1–5, 2016.
  • [26] Selvam, B., Marimuthu, P., Narayanasamy, R., Anandakrishnan, V., Tun, K.S., Gupta, M., Kamaraj, M.: Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites, Materials and Design, 475–481, 2014.
  • [27] Amigo, V., Ortiz, J. L., and Salvador, M. D.: Microstructure and mechanical behavior of 6061Al reinforced with silicon nitride particles, processed by powder metallurgy, Scripta Mater., 383–388, 2000.
  • [28] Canakci, A., Varol, T.: Microstructure and properties of AA7075/Al–SiC composites fabricated using powder metallurgy and hot pressing, Powder Technology, 72–79, 2014.
  • [29] Rajkumar, K., Aravindan, S.: Tribological performance of microwave sintered copper–TiC–graphite hybrid composites, Tribology International, 347–358, 2011.
  • [30] Abdullah, Y., Yusof, M. R., Muhammad, A., Kamarudin, N., Paulus, W. S., Shamsudin, R., Shudin, N. H., Mat Zali, N.: Al/B4C Composites with 5 and 10 wt% Reinforcement Content, Prepared By Powder Metallurgy, Journal of Nuclear and Related Technologies, 42–47, 2012.
  • [31] Ravichandran, M., Meignanamoorthy, M., Dineshkumar, S.: Microstructure and Properties of Hot Extruded Al-TiO2 Powder Metallurgic Composites, Applied Mechanics and Materials, 130–135, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cfb83b1-267f-4ab1-90e6-71549d597cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.