PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion fatigue crack propagation rate characteristics for weldable ship and offshore steels with regard to the influence of loading frequency and saltwater temperature

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After Vosikovsky (1975), the corrosion fatigue crack growth rate (CFCGR) characteristics have been divided into three regions. The region-III rates are very close to mechanical fatigue crack growth rates. CFCGR formulae, including the long-crack length effect (in region I only), the loading frequency effect (in region II only), and the saltwater temperature effect, have been proposed. It has been assumed that CFCGR is proportional to f –k, where f is the loading frequency and k is a constant. The averaged k-value for all steels of yield stress (YS) below 500 MPa, usually with ferrite-pearlite microstructures, is higher than that for YS > 500 MPa, usually with quenched and tempered microstructures. The temperature effect does not appear in region I below room temperature. In the remaining cases, that is, in region I for elevated temperatures and in region II for both low and elevated temperatures, the CFCGR increases with increasing temperature. Under a potential of –0.8 V, a long-crack-length effect, qualitatively similar to analogous effect for free corrosion conditions, appears.
Rocznik
Tom
Strony
88--99
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Narutowicza 11/12, 80-233 Gdańsk Polska
Bibliografia
  • 1. Vázquez J., Navarro C., Dominguez J. (2009). On the estimation of fatigue life in notches differentiating the phases of crack initiation and propagation. Fatigue Fract. Engng Mater. Struct., 33, 22-36.
  • 2. Vosikovsky O. (1975). Fatigue crack growth in an X65 line pipe steel at low cyclic frequencies in aqueous environments, J. Engineering Materials and Technology, 97, 298304.
  • 3. Jakubowski M. (1993). Geometry factors in corrosion fatigue crack propagation. Fatigue Fract. Engng Mater. Struct, 16, 495507.
  • 4. Miller K.J. (1982) The short crack problem. Fatigue Engng Mater, Struct, 5, 223-232.
  • 5. Lankford J. (1982) The growth of small fatigue cracks in 7075 aluminium. Fatigue Engng Mater. Struct, 5, 233-248.
  • 6. Jakubowski M. (2007). A model of corrosion fatigue crack growth in ship and offshore steels. Fatigue Fract. Engng Mater. Struct., 30, 682-688.
  • 7. Scott P. M., Silvester D. R. V. (1975). The influence of seawater on fatigue crack propagation in structural steel. Department of Energy, UK OSRP Technical Report 3/03.
  • 8. Morgan H. G., Thorpe T. W. (1981). An introduction to crack growth testing in the UK OSRP and its relevance to the design of offshore structures. Proc. Fatigue in Offshore Structures, Thomas Telford Ltd, London,pp.515.
  • 9. Kostienko N. A., Tatariencew W. A. (1987). Influence of overloading, stress ratio and moisture on fatigue cracks propagation resistance of cast steels. Fiz. Khim. Mekh. Mater., 23, No.2, 84-89 (in Russian).
  • 10. Jakubowski M. (1982). Influence of saltwater on fatigue crack growth rates in shipbuilding steels. Zeszyty Naukowe PG, No.344, 121130 (in Polish).
  • 11. Jakubowski M. (1986). A study crack length effect on the fatigue crack growth rate for ordinary shipbuilding steel in saltwater. 5th Intl Symp. Offshore Mechanics and Arctic Engineering, Tokyo, ASME Book No. 100194, 212217.
  • 12. Knight J. W. (1977). Corrosion fatigue of welded, quenched and tempered steels, Welding Research International, 7, 1738.
  • 13. Jakubowski M. (1993). Fatigue and corrosion fatigue crack propagation rates for two new shipbuilding steels. Marine Technology Transactions, 4, 7384 (in Polish).
  • 14. Zhang Y-H., Zettlemoyer N., Tubby P.J. (2012). Fatigue crack growth rates of mooring chain steels. Proc. ASME 2012 31st Intl Conf. Ocean, Offshore and Arctic Engineering, OMAE2012-84223, pp. 1-10.
  • 15. Hudak Jr.,S.J., Feiger J.H., Patton J.A.,(2010) The effect of loading frequency on corrosion-fatigue crack growth in high strength riser materials. Proc. ASME 2010 29th Intl Conf. Ocean, Offshore and Arctic Engineering, OMAE2010-20705, pp.1-10.
  • 16. Marvasti M,H., Chen W., Kania R., Worthingham R. and Van Boven G. (2010) Frequency dependence of fatigue and corrosion fatigue crack growth rate. Proc. 8th Int. Pipeline Conference, IPC2010-31007, 1-7.
  • 17. Nagai K., Iwata M., Yaima H., Yamamoto Y., Fujimoto Y. (1976). Effect of cycle frequency, mean stress, temperature and cathodic protection on fatigue crack growth in 3% salt-water. J. Society of Naval Architects Japan, 140, 255261.
  • 18. Nibbering J. J. W. (1983). Behaviour of mild steel under very low frequency loading in sea water. Corrosion Science,.23, 645662.
  • 19. Scott P. M., Thorpe T. W., Silvester D. R. V. (1983). Rate determining process for corrosion fatigue crack growth in ferritic steels in seawater. Corrosion Science, 23, 559575.
  • 20. Horstmann M., Gregory J. K., Schwalbe K.-H. (1995).. Geometry effects on corrosion fatigue in offshore structural steels. Int. J. Fatigue, 17, 293299.
  • 21. Endo K., Komai K., Matsuoda Y. (1981). Mechanical effects of corrosion products in corrosion fatigue crack growth of a steel, Bulletin of the Japan Society of Mechanical Engineering, 24, 13191325.
  • 22. Gallagher J. P. (1971). Corrosion fatigue crack growth rate behavior above and below KI SCC in steels. J. of Materials, 6, 941964.
  • 23. Thomas J. P., Wei R. P. (1992). Corrosion fatigue crack growth of steel in aqueous solutions, I: Experimental results and modelling the effects of frequency and temperature. Materials Science and Engineering, A159, 205221.
  • 24. Vosikovsky O. (1978). Frequency, stress ratio and potential effects on fatigue crack growth in HY130 steel in salt water, J. Testing and Evaluation, 1978, 6, ss.175182.
  • 25. Barsom J. M. (1971). Mechanism of corrosion fatigue below KI SCC . Int. J. of Fracture Mechanics, 7, 165-182. 26. Barsom J. M. (1971). Corrosion fatigue crack propagation below KI SCC. Engineering Fracture Mechanics, 3, 15-25. 27. Oberparleitner W., Schutz W. (1988). Calculation of crack growth in welded specimens under seawater conditions in order to predict fatigue life of offshore components. Werkstoffe und Korrosion, 39, 369-378, (in German).
  • 28. Telseren A., Doruk M. (1974). Temperature dependence of water enhanced fatigue crack growth in mild steel. Engineering Fracture Mechanics, 6, 283
  • 29. Cowling M. J., Hancock J. W., Appleton R. J., Gall D. S. (1985). Fatigue crack growth in biologically active environments under realistic load sequences, Glasgow University, Project OT/F/918 Final Report
  • 30. Jakubowski M. (2002). Some problems of corrosion fatigue crack propagation in ship and offshore steels. Monographic Series, No 32, Gdansk University of Technology, 2002 (in Polish).
  • 31. Matocha K. (2001). The influence of water environment on fatigue crack growth behaviour of high strength low alloy steel. XVI Physical Metallurgy and Materials Conference „Advanced Materials & Technologies”, Gdañsk-Jurata, Poland, Inzynieria Materialowa, 4/2001, 617-619.
  • 32. Wnuk M.P. (1973). Fundamentals of fracture mechanics. Skrypt No 822 AGH Krakow (in Polish)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cf8f304-888c-46ae-8acc-682d66afa790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.