PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetic Modelling and Half Life Study of Adsorptive Bioremediation of Soil Artificially Contaminated With Bonny Light Crude Oil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, comparative potential effects of commercial activated carbon (CAC) and plantain peel-derived biochar (PPBC) of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO) (10% w/w) and amended with different particle sizes (0.02, 0.07 and 0.48 mm) and dosage (20, 30 and 40 g) of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than unamended soil (natural attenuation) remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05) influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05) showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 63 poz., tab., rys.
Twórcy
autor
  • Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, P. M. B. 22, Oleh Campus, Nigeria
  • Biochemical and Bioenvironmental Engineering Laboratory, Department of Chemical Engineering, Delta State University, P. M. B. 22, Oleh Campus, Nigeria
  • Biochemical Engineering Laboratory, Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
Bibliografia
  • 1. Adams R.H., Guzmán-Osorio F.J. 2008. Evaluation of land farming and chemico-biological stabilization for treatment of heavily contaminated sediments in a tropical environment. Int. J. Environ. Sci. Technol. 5 (2), 169–178.
  • 2. Adesodun J.K., Mbagwu J.S.C. 2008. Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings.Bioresource Technol., 99 (13), 5659–5665.
  • 3. Agarry S.E., Ogunleye O.O. 2012. Box-behnken designs application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. Int. J. Energy and Environ. Eng. 3, 31–34.
  • 4. Agarry S.E., Aremu M.O. 2012. Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950, British Biotechnol. J. 2, 26–48.
  • 5. Agarry S.E., Aremu M.O., Aworanti O.A. 2013a. Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies. Soil and Sediment Contam. an Int. J. 22 (7), 800–816.
  • 6. Agarry S.E., Aremu M.O. Aworanti O.A. 2013b. Biodegradation of 2, 6-dichlorophenol wastewater in soil column reactor in the presence of pineapple peels-derived activated carbon, palm kernel oil and inorganic fertilizer. J. Environ. Protection, 4, 537–547.
  • 7. Amanchukwu C., Obafemi C.A., Okpokwasili, G.C. 1989. Hydrocarbon degradation and utilization by a palmwine yeast isolate. FEMS Microbiology Letters 57, 51–54.
  • 8. Aronson D., Boethling R., Howard P., Stiteler, W. 2006. Estimating biodegradation half-lives for use in chemical screening. Chemosphere 63, 1953–1960.
  • 9. Beesley L., Moreno-Jimenez E., Gomez-Eyles, J.L. .2010. Effects of Biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Poll., 158, 2282–2287.
  • 10. Bejarano A.C., Michel J. 2010. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill. Environ. Poll., 158, 1561–1569.
  • 11. Bremner J.M., Mulvaney C.S. 1982. Total nitrogen determination. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds) Method of Soil Analysis, Vol. 2. Madison, WI: American Society of Agronomy, pp. 595.
  • 12. Bushnaf K.M., Puricelli S., Saponaro S., Werner D. 2011. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J. Contam. Hydrol., 126, 208–215.
  • 13. Chan K.Y., Xu Z., 2009. Biochar: nutrient properties and their enhancement. In: Lehmann J., Joseph S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, pp. 67–84.
  • 14. Fouépé T.A., Kengni T.L., Gurunadha Rao V.V.S., Ndam N.J.R. 2009. Transfer of moisture through the unsaturated zone in the tropical forest using the neutron probe. Int. J. Environ. Sci. Technol. 6 (3), 379–388.
  • 15. Ghosh U., Luthy R.G., Cornelissen G., Werner D., Menzie C.A. 2011. In-situ sorbent amendments: A new direction in contaminated sediment management. Environ. Sci. Technol., 45, 1163–1168.
  • 16. Glaser B., Haumaier L., Guggenberger G., Zech W., 2001. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41.
  • 17. Hale S.E., Lehmann J., Rutherford D., Zimmerman A.R., Bachmann R.T., Shitumbanuma V., O’Toole A., Sundqvist K.L., Arp H.P.H., Cornelissen G. 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol., 46, 2830–2838.
  • 18. Ikhajiagbe B., Anoliefo G.O. 2011. Natural attenuation of a 14-month-old waste engine oil polluted soil. J. Soil Sci. Environ. Manage., 2(7), 184–192.
  • 19. Jakob L., Hartnik T., Henriksen T., Elmquist M., Brändli R.C., Hale S.E., Cornelissen G., 2012. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants. Chemosphere 88, 699–705.
  • 20. Karapanagioti H.K., Gossard C.M., Strevett K.A., Kolar R.L., Sabatini D.A. 2001. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. J. Contam. Hydrol., 48, 1–21.
  • 21. Kuhan R.C., Gupta R. 2009. Biological remediation of petroleum contaminate. In: A. Singh R.C. Kuhan O.P. Ward (Eds.), Soil Biology, Advances in Applied Bioremediation, Springer-Verlag, Berlin/ Heidelberg, pp. 73–186.
  • 22. Laird D.A. 2008. The charcoal vision: a win ewinewin scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy J., 100, 178–181.
  • 23. 23. Langlois V., Rutter A., Zeeb B., 2011. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil. J. Environ. Qual. 40, 1130–1134.
  • 24. Lehmann, J. 2007. A handful of carbon. Nature, 447, 143–144.
  • 25. Lehmann J., Joseph S. 2009. Biochar for Environmental Management. 1st ed.; Lehmann, J., Ed.; Earthscan: London, UK, pp. 1–9.
  • 26. Less Z.M., Senior E. 1995. Bioremediation. A practical solution to land pollution. In: Clean Technology and the Environment, Chapman and Hall, New York, pp. 121–146.
  • 27. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O’Neill B., Skjemstad J.O., Thies J., Luizao F.J., Petersen J., Neves E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70, 1719–1730.
  • 28. Liang B.Q., Lehmann J., Sohi S.P., Thies J.E., O’Neill B., Trujillo L., Gaunt J., Solomon D., Grossman J., Neves E.G., Luizao F.J. 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206–213.
  • 29. Mandri T., Lin J. 2007. Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afri. J. Biotechnol., 6 (1), 23–27.
  • 30. Marchal G., Smith K.E.C., Rein A., Winding A., Trapp S., Karlson U.G. 2013. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90, 1767–1778.
  • 31. Marris E., 2006. Putting the carbon back: black is the new green. Nature 442, 624–626.
  • 32. Matthies M., Witt J., Klasmeier J. 2008. Determination of soil biodegradation half lives from simulation testing under aerobic laboratory conditions: a kinetic model approach. Environ. Poll., 156, 99–105.
  • 33. McLean E.O. 1982. Soil pH and lime requirement In: C.A. Black (Ed.) Methods in Soil Analysis: Chemical and Microbiological Properties, Part II, Madison, WI American Society of Agronomy.
  • 34. Meynet P., Hale S.E., Davenport R.J., Cornelissen G., Breedveld G.D., Werner D. 2012. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46, 5057–5066.
  • 35. Mukhin V.M., Dubonosov V.T., Shmelev S.I. 1995. Application of active carbons for detoxification of soils contaminated with pesticide residues. Russian Chem. J., 6, 135–138.
  • 36. Nelson D.W., Sommers L.E. 1982. Determination of organic carbon. In: A.L. Page, R.H. Miller, and D.R. Keeney (Eds.) Method of soil analysis. Madison, WI: American Society of Agronomy, pp 539.
  • 37. Novak J.M., Busscher W.J., Watts D.W., Laird D.A., Ahmedna M.A., Niandou M.A.S. 2010. Short-term CO2 mineralization af ter additions of biochar and switchgrass to a typic kandiudult. Geoderma 154, 281–288
  • 38. O’Neill B., Grossman J., Tsai M.T., Gomes J.E., Lehmann J., Peterson J., Neves E., Thies J.E., 2009. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology 58, 23–35.
  • 39. Okoh A.I. 2006. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol. Molecular Biol. Rev., 1, 38–50.
  • 40. Olsen S.R., Sommers L.E. 1982. Determination of available phosphorus. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.) Method of Soil Analysis. Madison, WI: American Society of Agronomy, pp 403.
  • 41. Orshansky F., Narkis N. 1997. Characteristics of organics removal by PACT simultaneous adsorption and biodegradation. Wat. Res. 31(3), 391–398.
  • 42. Osuji L.C., Egbuson E.J.G., Ojinnaka C.M. 2005. Chemical reclamation of crude-oil-inundated soils from Niger Delta, Nigeria. Chem. Ecol., 21(1), 1–10.
  • 43. Owabor C.N., Aluyor E.O. 2008. Application of adsorbent as a novel technique during biodegradation of a polycyclic aromatic hydrocarbon (anthracene). Afri. J. Biotechnol., 7(18), 3321–3325.
  • 44. Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451.
  • 45. Payne R.B., May H.D., Sowers K.R. 2011. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ. Sci. Technol., 45 (20), 8772–8779.
  • 46. Qin G., Gong D., Fan M-Y. 2013. Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int. Biodeter. & Biodegrad., 85, 150–155.
  • 47. Semenyuk N.N., Yatsenko V. ., Strijakova E.R., Filonov A.E., Petrikov K.V., Zavgorodnyaya Y.A., Vasilyeva G.K. 2014. Effect of activated charcoal on bioremediation of diesel fuel-contaminated soil. Microbiol., 83 (5), 589–598.
  • 48. Sinkkonen S., Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDF sand PCBs for environmental fate modeling. Chemosphere 40, 943–949.
  • 49. Sohi S., Krull E., Lopez-Capel E., Bol R. 2010. A review of biochar and its use and function in soil. Adv. Agronomy 105, 47–82.
  • 50. Solomon D., Lehmann J., Thies J., Schafer T., Liang B.Q., Kinyangi J., Neves E., Petersen J., Luizao F., Skjemstad J. 2007. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 71, 2285–2298.
  • 51. Sparrevik M., Saloranta T., Cornelissen G., Eek E., Fet A.M., Breedveld G.D., Linkov I. 2011. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation. Environ. Sci. Technol. 45, 4235–4241.
  • 52. Spokas K.A., Koskinen W.C., Baker J.M., Reicosky D.C. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77, 574–581.
  • 53. Strek H.J., Weber J.B., Shea P.J., Mrozek Jr. E., Overcash M.R. 1981. Reduction of polychorinated biphenyl toxicity and uptake of carbon-14 activity by plants through the use of activated carbon, J. Agr. Food Chem., 29, 288–293.
  • 54. Thies J.E., Rillig M.C. 2009. Characteristics of biochar: Biological properties. In: Lehmann J., Joseph S. (Eds.) Biochar for Environmental Management. Earthscan: London, UK, pp. 85–105.
  • 55. Van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327, 235–246.
  • 56. Vasilyeva G.K., Strijakova E.R., Shea P.J. 2006. Use of activated carbon for soil bioremediation. Soil and Water Pollution Monitoring, Protection and Remediation, 309–323.
  • 57. Vasilyeva G.K., Strijakova E.R., Nikolaeva S.N., Lebedev A.T., Shea P.J. 2010. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ. Pollut., 158, 770–777.
  • 58. Vidali M. 2001. Bioremediation: An overview. J. Appl. Chemistry 73(7), 1163–1172.
  • 59. Xu T., Lou L., Luo L., Cao R., Duan D., Chen Y. 2012. Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Science of the Total Environment 414, 727–731.
  • 60. Yerushalmi L., Rocheleau S., Cimpoia R., Sarrazin M., Sunahara G., Peisajovich A., Leclair G., Guiot R.S. 2003. Enhanced bioremediation of petroleum hydrocarbons in contaminated soil, Bioremediation J., 7 (1), 37–51.
  • 61. Yeung P.Y., Johnson R.L., Xu J.G. 1997. Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. J. Environ. Quality 26, 1511–1576.
  • 62. Zahed M.A., Abdul Aziz H., Isa M.H., Mohajeri L., Mohajeri S., Kutty S.R.M. 2011. Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500. J. Hazard. Mater., 185, 1027–1031.
  • 63. Zimmerman A.R., Gao B., Ahn M-Y. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. & Biochem., 43, 1169–1179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cf4863f-457e-44d5-a56e-8bc6a317a951
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.