Nr 4/2018

Magdalena CUDAK

e-mail: cudak@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Udział gazu zatrzymanego w cieczy dla układu gaz-ciecz w mieszalniku z dwoma mieszadłami

Prosimy cytować jako: Inż. Ap. Chem. 2018, 57, 4, 93-94

INZYNIERIA I APARATURA CHEMICZNA

Wstep

Udział gazu zatrzymanego w cieczy zależy od wielu czynników, m.in. intensywności mieszania, parametrów geometrycznych zbiornika i mieszadła, rodzaju, liczby oraz konfiguracji mieszadeł a także od własności fizycznych fazy ciekłej [Karcz i in., 2004; Kamieński, 2004; Kamieński i Spytkowski, 2011; Adamiak i Karcz, 2007; Moucha i in., 2003; Kiełbus, 2011].

Badania miały na celu określenie wpływu wybranych parametrów (natężenie przepływu gazu V_o, częstość obrotów mieszadła n, stężenie sacharozy x w wodnym roztworze) oraz konfiguracji mieszadeł na udział φ gazu zatrzymanego w cieczy dla układu gaz-ciecz w mieszalniku z dwoma mieszadłami o zmodyfikowanym kształcie łopatek.

Badania doświadczalne

Aparatura. Pomiary udziału gazu φ zatrzymanego w cieczy zostały wykonane w zbiorniku ze standardowymi przegrodami (J = 4;B = 0.1D) o objętości roboczej $V = 0.02 \text{ m}^3$. Mieszalnik o średnicy D = 0,288 m był napełniony cieczą do wysokości H = 2D. Płyn mieszano jednym z dwóch zestawów mieszadeł o zmodyfikowanym kształcie łopatek: turbinowe Smitha (górne) - A 315 (dolne) oraz A 315 (górne) - turbinowe Smitha (dolne). Mieszadła o średnicy d =0,33D były zamontowane na wale w odległości $h_1 = 0,167H$ oraz h_2 = 0,67H od płaskiego dna mieszalnika. Pierścieniowy dystrybutor gazu, o średnicy $d_d = 0.7d$, był umieszczony w połowie odległości między mieszadłem a dnem mieszalnika. Parametry geometryczne zbiornika i mieszadeł przedstawiono na rys. 1

Materiały. Fazę ciekłą stanowiła woda destylowana, 2,5% oraz 5% wodny roztwór sacharozy, a fazę gazową powietrze.

Zakres badań. Pomiary wykonano, w zakresie burzliwego przepływu cieczy w zbiorniku ($Re \in \langle 60000; 125000 \rangle$), dla trzech wartości objętościowego natężenia przepływu V_{g} powietrza przez mieszalnik (V_{g} $[m^3/s] \in \langle 2, 22 \cdot 10^4; 5, 56 \cdot 10^4 \rangle$). Parametry fizyczne układu zmieniały się w następujących zakresach: gęstość ρ [kg/m³] \in <1000; 1019>, napięcie powierzchniowe σ [N/m] $\in \langle 0,072; 0,086 \rangle$; dynamiczny współczynnik lepkości fazy ciekłej η_c [Pas] $\in \langle 1.10^{-3}; 1, 2.10^{-3} \rangle$.

Udział gazu φ zatrzymanego w cieczy obliczano jako średnia wartość z 10 odczytów wysokości słupa mieszaniny gaz-ciecz na pionowej ścianie mieszalnika.

Rys. 1. Parametry geometryczne mieszalnika i mieszadeł; a) mieszalnik; b) mieszadło turbinowe Smitha (CD 6); c) mieszadło A 315

Wyniki i dyskusja

Wpływ natężenia przepływu gazu $V_{\rm g}$, częstości obrotów mieszadła *n* oraz stężenia sacharozy x w układzie na udział gazu φ zatrzymanego w cieczy przeanalizowano na podstawie około 200 punktów pomiarowych uzyskanych w trakcie przeprowadzonych badań.

Wartości krytycznej częstości obrotów mieszadła n_{kr} konieczne do odpowiedniego rozproszenia pęcherzyków gazu w układzie przedstawiono w tab. 1. Wartości krytycznej częstości obrotów mieszadła $n_{\rm kr}$ zwiększały się ze wzrostem objętościowego natężenia przepływu gazu V_{g} oraz zmniejszały się ze wzrostem stężenia sacharozy x w układzie. Znacznie wyższe wartości krytycznej częstości obrotów mieszadła uzyskano w przypadku, kiedy na wale jako dolne zamontowane było mieszadło turbinowe Smitha (CD 6).

Tab. 1. Wartości krytycznych czestości obrotów mieszadła nu

Konfiguracja mieszadeł	$\begin{array}{c} V_{\rm g} \left[{\rm m}^3 / {\rm s} \right] \rightarrow \\ x \left[\% \right] \downarrow \end{array}$	2.22×10^{-4}	$3.89 \cdot 10^{-4}$	$5.56 \cdot 10^{-4}$
		n _{kr} [1/s]		
CD 6g -A 315d	0	8	8,67	9,67
	2,5	8,33	8,67	9,33
	5	8	8,33	9
A 315 _g – CD 6 _d	0	9,67	9,67	10
	2,5	9	9	9,33
	5	8,67	8,67	9

Zależność $\varphi = f(n)$ dla przebadanych konfiguracji mieszadeł pokazano na rys. 2-4. Największy wpływ na udział gazu φ zatrzymanego w cieczy ma objętościowe natężenia przepływu Vg. Ze wzrostem wartości objętościowego natężenia przepływu V_{g} udział gazu φ zatrzymanego w cieczy zwiększa się dwukrotnie (dla konfiguracji mieszadeł CD 6g-A 315d) a nawet trzykrotnie (dla konfiguracji mieszadeł A 315g – CD 6d) dla układu powietrze woda (Rys. 2, 3). Wpływ ten maleje ze wzrostem stężenia sacharozy x w układzie. Dla układu powietrzewodny roztwór sacharozy zwiększenie wartości objętościowego natężenia przepływu gazu Vg powoduje około 60% lub 80% wzrost udziału gazu φ zatrzymanego w cieczy odpowiednio dla konfiguracji mieszadeł $CD 6_g - A 315_d i A 315_g - CD 6_d$.

Rys. 2. Zależność $\varphi = f(n)$; konfiguracja mieszadeł: CD 6_g-A 315_d; pasek czarny - powietrze-woda; pasek biały - powietrze-2,5% wodny roztwór sacharozy; pasek szary - powietrze-5% wodny roztwór sacharozy

Dodanie sacharozy x do wodnego roztworu, dla obu konfiguracji mieszadeł oraz dla niższych wartości $V_g = 2,22 \cdot 10^4 \text{ m}^3/\text{s}$, powoduje około dwukrotny wzrost udziału gazu φ zatrzymanego w cieczy (Rys. 2, 3). Wpływ stężenia x sacharozy w wodnym roztworze na udział gazu φ zatrzymanego w cieczy maleje ze wzrostem wartości objętościowego natężenia przepływu $V_{\rm g}$. Przy wyższych wartościach objętościowego natężenia przepływu gazu w układzie dodanie sacharozy zwiększa

str. 94

INŻYNIERIA I APARATURA CHEMICZNA

Nr 4/2018

Rys. 3. Zależność $\varphi = f(n)$; konfiguracja mieszadeł: A 315g–CD 6_d; pasek czarny – powietrze-woda; pasek biały – powietrze-2,5% wodny roztwór sacharozy; pasek szary – powietrze - 5% wodny roztwór sacharozy

wartości udziału gazu φ zatrzymanego w cieczy o około 60÷70% dla V_g = 3,89·10⁴ m³/s i o około 40÷50% dla V_g = 5,56·10⁴ m³/s.

Wpływ częstości obrotów mieszadła na udział gazu φ zatrzymanego w cieczy jest znacznie mniejszy niż objętościowego natężenia przepływu gazu V_g i stężenia wodnego roztworu sacharozy *x* (Rys. 2, 3). Zwiększenie częstości obrotów mieszadła z 10 1/s do 13 1/s powoduje wzrost udziału gazu φ zatrzymanego w cieczy średnio o około 35% dla konfiguracji mieszadeł CD 6_g – A 315_d i o około 25% dla konfiguracji mieszadeł A 315_g – CD 6_d.

Wpływ konfiguracji mieszadeł na udział gazu φ zatrzymanego w cieczy w mieszalniku zależy od wartości objętościowego natężenia przepływu gazu V_g i maleje ze wzrostem V_g (Rys. 4). Dla V_g = 2,22·10⁻⁴ m³/s wartości udziału gazu φ zatrzymanego w cieczy, dla przebadanych konfiguracji różnią się o około 30%, dla V_g = 2,22·10⁻⁴ m³/s, o około 20% – dla V_g = 3,89·10⁻⁴ m³/s natomiast dla najwyż-szego objętościowego natężenia gazu V_g = 5,56·10⁻⁴ m³/s różnica wynosi około 10%. We wszystkich analizowanych przypadkach wyższe wartości udziału gazu φ zatrzymanego cieczy uzyskano dla konfiguracji mieszadeł CD 6g – A 315_d.

Rys. 4. Zależność $\varphi = f(n)$; x = 5%; pasek czarny – CD 6_g –A 315_d; pasek biały – A 315_g –CD 6_d

Rys. 5. Zależność $\varphi = f(Kg)$; konfiguracja mieszadeł: CD 6g–A 315d; kolor czarny – powietrze-woda; kolor biały – powietrze-5% wodny roztwór sacharozy; \blacklozenge , $\diamond - 2,22 \times 10^4 \text{ m}^3/\text{s}; \blacksquare$, $\square - 3,89 \times 10^4 \text{ m}^3/\text{s}; ▲, <math>\Delta - 5,56 \times 10^4 \text{ m}^3/\text{s}$

Rys. 6. Zależność $\varphi = f(Kg)$; konfiguracja mieszadel: A 315g–CD 6_d; kolor czarny – powietrze-woda; kolor biały –powietrze-5% wodny roztwór sacharozy; $\bullet, \diamond - 2,22 \cdot 10^4 \text{ m}^3/\text{s}; \bullet, \Box - 3,89 \cdot 10^4 \text{ m}^3/\text{s}; \bullet, \Delta - 5,56 \cdot 10^4 \text{ m}^3/\text{s}$

Zależność $\varphi = f(Kg)$ przedstawiono na rys. 5-7. Ze wzrostem wartości liczby przepływu gazu Kg udział gazu φ zatrzymanego w cieczy maleje. Większy wpływ Kg na φ stwierdzono w przypadku, kiedy do układu dodano sacharozy x (Rys. 5, 6). Przy założeniu Kg = const dodanie do układu sacharozy powoduje nawet dwukrotny wzrost udziału gazu φ zatrzymanego w cieczy (rys. 5, 6). Wpływ stężenia sacharozy x na udział gazu φ zatrzymanego w cieczy (rys. 5, 6). Wpływ stężenia sacharozy x na udział gazu φ zatrzymanego w cieczy zmniejsza się ze wzrostem liczby przepływu gazu (V_g = const). Zwiększenie wartości objętościowego natężenia przepływu gazu V_g w układzie (przy założeniu Kg = const) powoduje nawet ponad dwukrotny wzrost udziału gazu φ zatrzymanego w cieczy (dla CD 6_g – A 315_d).

Większy wpływ liczby przepływu Kg na udział gazu φ zatrzymanego w cieczy uzyskano dla konfiguracji mieszadeł CD 6_g – A 315_d (Rys. 7). Wpływ ten maleje ze wzrostem wartości liczby przepływu gazu Kg (przy założeniu V_g = const).

Rys. 7. Zależność φ = f(Kg); x = 5%; kolor czarny – CD 6g– A 315_d; kolor biały – A 315_g –CD 6_d; ◆, ◊ - 2,22 x 10⁴ m³/s; ■, □ - 3,89·10⁴ m³/s; ▲, Δ - 5,56·10⁴ m³/s

Wyniki badań udziału gazu φ zatrzymanego w cieczy uwzględniające liczbę przepływu gazu Kg, liczbę *Webera*, stężenie wodnego roztworu sacharozy *x* przedstawiono w postaci zależności

$$\varphi = aKg^{b}We^{c}(1+x)^{d} \tag{1}$$

gdzie: $Kg = V_g/(nd^3)$; $We = n^2 d^3 \rho / \sigma$

Wartości współczynnika a oraz wykładników b, c zestawiono w tab. 2.

Tab. 2. Wartości współczynników a oraz wykładników b, c, d w równ. (1)

Konfiguracja mieszadeł	$a \cdot 10^4$	b	с	d	$\pm \Delta$
A 315 _g – CD 6 _d	7,886	0,82	0,89	9,64	6
$CD 6_g - A 315_d$	3,531	0,63	0,93	10,84	6

Równ. (1) obowiązuje w następującym zakresie zmiennych:

 $Kg \in \langle 0,01; 0,08 \rangle;$ $We \in \langle 750; 2200 \rangle;$ $x \in \langle 0; 0,05 \rangle.$

Wnioski

Na podstawie badań stwierdzono, że w przypadku mieszalnika z dwoma mieszadłami największe wartości udziału φ gazu zatrzymanego w cieczy uzyskano dla konfiguracji mieszadeł CD 6_g – A 315_d.

Największy wpływ na udział φ gazu zatrzymanego w cieczy ma objętościowe natężenie przepływu gazu V_g oraz stężenia x sacharozy w wodnym roztworze. Wpływ pozostałych dwóch parametrów, częstości obrotów mieszadła oraz konfiguracji mieszadeł na φ jest znacznie mniejszy.

LITERATURA

Adamiak R., (2002). Badania warunków dyspergowania gazu w cieczy w mieszalnikach różnej skali. Praca doktorska, Pol. Szczecińska, Szczecin w starte strategy skali. Praca doktorska, Pol. Szczecińska, Szczecin

Kamieński J., (2004). Mieszanie układów wielofazowych. WNT, Warszawa Kamieński j., Spytkowski S., (2011). Dyspergowanie gazu w cieczy w aparacie

z dwoma oddzielnie napędzanymi mieszadłami. *Inż. Ap. Chem.*, 50(4), 26-27 Karcz J., Siciarz R., Bielka I., (2004), Gas hold-up in a reactor with dual

- system of impellers. *Chem. Pap.*, 58(6), 404-409 Kiełbus A., (2011). Analiza hydrodynamiki układu ciecz-gaz w zbiorniku
- z dwoma mieszadłami. *Inż. Ap. Chem.*, 50(4), 18-19
- Moucha T., Linek V., Prokopowa E., (2003). Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple configurations: Rushton turbine, pitched blade and Techmix impeller and their combinations. *Chem. Eng. Sci.*, 58, nr 9, 1839-1846. DOI: 10.1016/S0009-2509(02)00682-6