Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of a facial biometrics system was discussed in this research, in which different classifiers were used within the framework of face recognition. Different similarity measures exist to solve the performance of facial recognition problems. Here, four machine learning approaches were considered, namely, K-nearest neighbor (KNN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Principal Component Analysis (PCA). The usefulness of multiple classification systems was also seen and evaluated in terms of their ability to correctly classify a face. A combination of multiple algorithms such as PCA+1NN, LDA+1NN, PCA+ LDA+1NN, SVM, and SVM+PCA was used. All of them performed with exceptional values of above 90% but PCA+LDA+1N scored the highest average accuracy, i.e. 98%.
Wydawca
Rocznik
Tom
Strony
265--272
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Department of Computer Science, Sapienza University of Rome, Italy
autor
- Department of Artificial Intelligence, Sapienza University of Rome, Italy
autor
- Department of Data Science, Sapienza University of Rome, Italy
autor
- Department of Computer Science, Sapienza University of Rome, Italy
autor
- Department of Computer Science, COMSATS University Islamabad, Attock Campus, Pakistan
autor
- Department of Information Technology, Quaid-e-Awam University, Nawabshah, Pakistan
Bibliografia
- 1. Buriro A., Crispo B., Conti M., A bimodal behavioral biometric-based user authentication scheme for smartphones. Journal of Information Security and Applications, 44, 2019, 89-103.
- 2. Gupta S., Gupta V.K., Lamba O.S., Digital image processing on face recognition using PCA. JETIR June 2019, 6(6).
- 3. Naik R., Pratap Singh D., Chaudhary J., A survey on comparative analysis of different ICA based face recognition technologies. Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, 2018, pp. 1913-1918, doi: 10.1109/ ICECA.2018.8474860.
- 4. Tai-Xiang Jiang, Ting-Zhu Huang, Xi-Le Zhao, Tian-Hui Ma, Patch-based principal component analysis for face recognition. Computational Intelligence and Neuroscience, 2017, Article ID 5317850. https://doi.org/10.1155/2017/5317850.
- 5. Torkhani, G., Ladgham, A., Sakly, A. et al. A 3D–2D face recognition method based on extended Gabor wavelet combining curvature and edge detection. SIViP 11, 2017, 969–976. https://doi.org/10.1007/ s11760-016-1046-7.
- 6. Benhida E.K., Boulahoual A., Face recognition of face images with hidden parts using Gabor wavelets F. and PCA”, Periodicals of Engineering and Natural Sciences, 6(2), 2018.
- 7. Payal P., Goyani M.M., A comprehensive study on face recognition: methods and challenges. The Imaging Science Journal, 68(2), 2020, 114-127. DOI: 10.1080/13682199.2020.1738741.
- 8. Faridi M.S., Zia M.A., Javed Z., A comparative analysis using different machine learning: An efficient approach for measuring accuracy of face recognition. International Journal of Machine Learning and Computing, 11( 2), 2021.
- 9. Kerbaa T.H., Mezache A., Oudira H., Model selec-tion of sea clutter using cross validation method 9. Procedia. Computer Science, 158, 2019, 394-400. https://doi.org/10.1016/j.procs.2019.09.067.
- 10. Zhang Y., Xiao X., Yang L., Xiang Y., Zhong S., Secure and efficient outsourcing of PCA-based face recognition. IEEE Transactions on Information Forensics and Security, 15, 2020, 1683-1695. doi: 10.1109/TIFS.2019.2947872.
- 11. Barnouti N.H., Matti W.E., Al-Dabbagh S.S.M., Face detection and recognition using Viola-Jones with PCA-LDA and square Euclidean distance. International Journal of Advanced Computer Science and Applications, 7(5), 2016.
- 12. Borade S.N., Deshmukh R.R., Ramu S., Face recognition using fusion of PCA and LDA: Borda count approach. 24th Mediterranean Conference on Control and Automation (MED), Athens, 2016, 1164-1167, doi: 10.1109/MED.2016.7536065.
- 13. Thissen U., Pepers M., Üstün B., Melssen W.J., Buydens L.M.C., Comparing support vector machines to PLS for spectral regression applications. Chemometrics and Intelligent Laboratory Systems, 73(2), 2004, 169-179.
- 14. Zhihua Xie, Guodong Liu, Infrared face recognition based on binary particle swarm optimization and SVM-wrapper model. Proc. SPIE 9674, AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, 96740J (15 October 2015). https://doi.org/10.1117/12.2197388
- 15. Dadi H.S., Pillutla G.K.M., Improved face recognition rate using HOG features and SVM Classifier. IOSR Journal of Electronics and Communication Engineering, 11(4), 2016, 34-44.
- 16. Dhinakaran, M.S., Thirumaran, J., Evaluation of profile-based personalized web search using KNN and ECC. International Journal of Applied Engineering Research, 13(19), 2018, 14411-14416.
- 17. Friedman, L. et al. Method to assess the temporal persistence of potential biometric features: Application to oculomotor, gait, face and brain structure databases. PLoS One, 12(6), 2017, e0178501.
- 18. Key Parameters and Configuration for Streaming Replication. https://www.enterprisedb.com/blog/ high-availibility-parameters-configuration-streaming-replication-postgresql
- 19. GitHub.efflorez/facerecognition. https://github. com/efflorez/facerecognition
- 20. Ramezan, C.A, Warner T.A., Maxwell A.E., Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification. Remote Sensing 11(2), 2019, 185-206.
- 21. Axnick, K.B., Ng, K.C. 2005. Fast face recognition. Image and Vision Computing, 43-48.
- 22. Starovoitov V.V., Samal D.I., Briliuk D.V., Three approaches for face recognition. The 6th International Conference on Pattern Recognition and Image Analysis, October 21-26, 2002, Velikiy Novgorod, Russia, pp. 707-711.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cf12e74-1f6b-4304-9a65-e4aec8418b76