PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and characterization of SOFC fuel cell model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Symulacja i charakterystyka modelu ogniwa paliwowego SOFC
Języki publikacji
EN
Abstrakty
EN
The SOFC fuel cell is one of the so-called solid electrolyte fuel cells that operate at high temperatures of 650 to 1200°C. This temperature level is necessary for the solid electrolyte to have sufficient ionic conductivity. This high temperature causes a very high heat exchange between the various components of the SOFC. In the 1-D model, the fuel cell is usually treated as a set of layers including interconnects, air channel, electrodes, electrolyte, and fuel channel both gas composition and flow rate in each channel are assumed to be constant, and their mean values are used in the simulation.
PL
Ogniwo paliwowe SOFC należy do tzw. ogniw paliwowych ze stałym elektrolitem, które pracują w wysokich temperaturach od 650 do 1200°C. Ten poziom temperatury jest konieczny, aby elektrolit stały miał wystarczającą przewodność jonową. Tak wysoka temperatura powoduje bardzo dużą wymianę ciepła pomiędzy poszczególnymi elementami SOFC.
Słowa kluczowe
Rocznik
Strony
18--24
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Electrotechnical Engineering Laboratory(LGE), University Tahar Moulay of Saida, Adresse: BP 138 cité ENNASR 20000, Saida, Algeria
  • Electrotechnical Engineering Laboratory(LGE), University Tahar Moulay of Saida, Adresse: BP 138 cité ENNASR 20000, Saida, Algeria
  • Electrotechnical Engineering Laboratory(LGE), University Tahar Moulay of Saida, Adresse: BP 138 cité ENNASR 20000, Saida, Algeria
Bibliografia
  • [1]. Steffen, Christopher J., Jr., Freeh, Joshua E., Larosiliere, Louis M., Off- Design Performance Analysis of a Solid Oxide Fuel Cell/GasTurbine Hybrid for Auxiliary Aerospace Power, Third International Conference of Fuel Cell Science and Technology, May 23-25, 2005, FUELCELL2005-74099.
  • [2]. V.T. Srikar, Kevin T.Turner, Tze Yung Andrew Ie, S. Mark spearing. Structural design considerations for micro machined solid-oxide fuel cells. Journal of Power Sources (2004).
  • [3]. Jinliang Yuan, Masoud Rokni, Bengt Sunden. Three-dimensional computational analysis of gas and heat transport phenomena in ducts under for anode-supported solid oxide fuel cells. International Journal of Heat and Mass Transfer (2003).
  • [4]. K. Sedghisigrarchi, A. feliachi "Dynamic and Transient analysis of power distribution systems with fuel Cells-Part I: fuel-cell dynamic model" IEEE Transaction on energy conversion, vol.19, No.2, June 2004.
  • [5]. Rinaldi, Giorgio, et al. "Post-test Analysis on a Solid Oxide Cell Stack Operated for 10,700 Hours in Steam Electrolysis Mode." Fuel Cells (2017).
  • [6]. Jeon D.H. Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model. Energy. 2019; 188:116050. doi: 10.1016/j.energy.2019.116050.
  • [7]. Zhang H, Xu H, Chen B, Dong F, Ni M. Two-stage thermoelectric generators forwaste heat recovery from solid oxide fuel cells. Energy 2017; 132:280e8.
  • [8]. Chatzichristodoulou C, Chen M, Hendriksen P, Jacobsen T, Mogensen M. Un-derstanding degradation of solid oxide electrolysis cells through modeling ofelectrochemical potentialprofiles. Electrochim Acta 2016; 189:265e82.
  • [9]. Beigzadeh, M.; Pourfayaz, F.; Ahmadi, M.H. Modeling and improvement of solid oxide fuel cell-single e_ect absorption chiller hybrid system by using nanofluids as heat transporters. Appl. Therm. Eng. 2020, 166, 114707.
  • [10]. Lyu, Z.; Li, H.; Han, M. Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane. Int. J. Hydrog. Energy 2019, 44, 12151–12162.
  • [11]. Silva-Mosqueda, D.M.; Elizalde-Blancas, F.; Pumiglia, D.;Santoni, F.; Boigues-Muñoz, C.; McPhail, S.J. Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance. Appl. Energy 2019, 235, 625–640.
  • [12]. Suboti´c, V.; Menzler, N.H.; Lawlor, V.; Fang, Q.; Pofahl, S.; Harter, P.; Schroettner, H.; Hochenauer, C. On the origin of degradation in fuel cells and its fast identification by applying unconventional online-monitoring tools. Appl. Energy 2020, 277,115603.
  • [13]. Theuer, T.; Schäfer, D.; Dittrich, L.; Nohl, M.; Foit, S.; Blum, L.; Eichel, R.-A.; de Haart, L.G.J. Sustainable Syngas Production by High-Temperature Co-electrolysis. Chem. Ing. Tech. 2020, 92, 40–44.
  • [14]. Hai-Bo Huo; Xin-Jian Zhu; Guang Yi Cao (2006). "Nonlinearmodeling of a SOFC stack based on a least squares support vector machine". Journal of Energy Sources. 162 (2) : 1220-1225. Bibcode: 2006JPS ... 162.1220H. doi: 10.1016/j.jpowsour.2006.07.031.
  • [15]. Milewski J, Miller A (2006). "Influences of electrolyte type and thickness on solid oxide fuel cell hybrid system performance". Journal of fuel cell science and technology. 3 (4): 396-402. doi: 10.1115/1.2349519.
  • [16]. M. Santarelli; P. Léone; M. Calé; G. Orsello (2007). "Experimental evaluation of fuel use and air management sensitivity on a 100 kW SOFC system". Journal of Energy Sources. 171 (2): 155-168. Bibcode: 2007JPS ... 171..155S . doi: 10.1016/j.jpowsour.2006.12.032.
  • [17]. Chick L. A., Williford R. E., Stevenson J. W., (2003), Spreadsheet Model of SOFC Electrochemical Performance, SECA Modeling &Simulation Training Session August 2003 (web-page: www.netl.doe.gov/ publications/ proceedings/ 03/ seca - model/secamodel03. html).
  • [18]. Fuel Cell Handbook, 6th ed., (2002), U.S. Department of Energy/National Energy Technology Laboratory Strategic Center for Natural Gas, Morgantown, WV/Pittsburgh, PA/Tulsa, OK, 2002, November.
  • [19]. Keegan K., Khaleel M., Chick L.A., Recknagle K., Simner S., Deibler J. (2002), Analysis of a Planar Solid Oxide Fuel Cell Based Automotive Auxiliary Power Unit, SAE Technical Paper Series No.2002-01-0413.
  • [20]. Larminie, J., Dicks, A., (2003), Fuel Cell Systems Explained, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
  • [21]. Singhal S.C., Kendall, K., (2004), High Temperatures Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK.
  • [22]. Braun R. (2002), Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-Scale Stationary Applications, Ph.D. Thesis, University of Wisconsin, Madison, USA.
  • [23]. Chen et al. 2019Advanced Fuel Cell Based on New Nano crystalline Structure Gd0.1Ce0.9O2 Electrolyte. ACS Appl Mater Interfaces11(11)10642-50.
  • [24]. Hauck M, Herrmann SandSpliethoff H2017Simulation of a reversible SOFC with Aspen Plus International Journal of Hydrogen Energy42(15)10329-40.
  • [25]. Amiri S, Hayes REandSarkar P2018Transient simulation of atubular micro-solid oxide fuel cell Journal of Power Sources40763-9.
  • [26]. Nafees A, Rasid RBA, Ideris A 2019Aspen Hysys Simulation of a Natural Gas Fueled Solid Oxide Fuel Cells TBS.
  • [27]. TVVS Lakshmi, P Geethanjali and Krishna Prasad S “Mathematical modeling of solid oxide fuel cell using Matlab/Simulink,” International Conference on Microelectronics,Communication and Renewable Energy (ICMiCR-2013).
  • [28]. Küngas, R. Review—electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 2020, 167, 044508.
  • [29]. Wang X, Lv X, Weng Y. Performance analysis of a biogas-fueled SOFC/gt hybridsystem integrated with anode-combustor exhaust gas recirculation loops. Energy 2020; 197:117213.
  • [30]. M.MANKOUR, M.Sekour, A. Hamlet, M.Fourali ‘Characterization and Simulation of Solid Oxide Fuel Cell (SOFC)’’ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 Hatti (Ed.): ISSN2367-3370, E-ISSN2367-3389 (electronic) Lecture Notes in Networks and Systems.
  • [31]. Song, Y.; Zhang, X.; Xie, K.;Wang, G.; Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells:Developments, challenges, and prospects. Adv. Mater. 2019, 31, 1902033.
  • [32]. Sihvo, J.; Roinila, T.; Stroe, D.I. Novel Fitting Algorithm for Parametrization of Equivalent Circuit Model of Li-Ion Battery from Broadband Impedance Measurements. IEEE Trans. Ind. Electron. 2021, 68, 4916–4926.
  • [33]. S.H. Chan, H.K. Ho and Y. Tian, “Multi-level modeling of SOFC-gas turbine hybrid system,” International Journal of Hydrogen Energy, Vol. 28, No. 8, pp. 889-900, Aug. 2003.
  • [34]. M. Mankour (&) M. Sekour "Modeling of Fuel Cell SOFC" Springer Nature Switzerland AG 2019 M. Hatti (Ed.): ICAIRES 2018, LNNS 62, pp. 471–482, 2019.https://doi.org/10.1007/978-3-030-04789-4_50.
  • [35]. M. Mankour, M. Sekour, and L. Boumadien "Thermal Characterization of a SOFC Fuel Cell" The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 Hatti (Ed.): ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cebfc20-6729-49b7-be19-c46b5d1d56fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.