Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we study the following nonlinear boundary-value problem [formula] where Ω ⊂ RN is a bounded domain with smooth boundary [formula] is the outer unit normal derivative on [formula] are two real numbers such that [formula] is a continuous function on Ω with [formula] are continuous functions. Under appropriate assumptions on ƒ and g, we obtain the existence and multiplicity of solutions using the variational method. The positive solution of the problem is also considered.
Czasopismo
Rocznik
Tom
Strony
621--638
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Mathematics University Mohamed I Oujda, Morocco
autor
- Department of Mathematics University Mohamed I Oujda, Morocco
Bibliografia
- [1] E. Acerbi, G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal, 156 (2001), 121–140.
- [2] M. Allaoui, A. El Amrouss, A. Ourraoui, Existence and multiplicity for a Steklov problem involving the p(x)-laplace operator, Electron. J. Differential Equations 2012 (2012) 132, 1–12.
- [3] M. Allaoui, A. El Amrouss, Solutions for Steklov boundary value problems involving p(x)-Laplace operators, Bol. Soc. Paran. Mat. (3s.) 32 (2014) 1, 163–173.
- [4] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
- [5] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. T.M.A 20 (1993), 1205–1216.
- [6] G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel) 80 (2003), 424–429.
- [7] J. Chabrowski, Y. Fu, Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604–618.
- [8] Y.M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math, 66 (2006), 1383–1406.
- [9] S.G. Deng, Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl. 360 (2009) 2, 548–560.
- [10] L. Diening, Theorical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, Germany, 2002.
- [11] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
- [12] X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(), J. Math. Anal. Appl, 262 (2001), 749–760.
- [13] X.L. Fan, D. Zhao, On the spaces Lp(x)() and Wm,p(x)(), J. Math. Anal. Appl 263 (2001), 424–446.
- [14] X.L. Fan, D. Zhao, On the generalized Orlicz-sobolev spaces W1,p(x)(), Journal of Gansu Education College 12 (1998) 1, 1–6.
- [15] X.L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 300 (2004), 30–42.
- [16] B. Ge, Q.M. Zhou, Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Math. Appl, Sci. 2013. doi: 10.1002/mma.2760.
- [17] T.C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.
- [18] C. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal. 74 (2011), 2908–2915.
- [19] T.G. Myers, Thin films with high surface tension, SIAM Review 40 (1998) 3, 441–462.
- [20] C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen, B. Dolgin, Electrorheological fluid based force feedback device, [in:] Proceedings of the 1999 SPIE Telemanipulator and Telepresence Technologies VI Conference (Boston, MA) 3840 (1999), 88–99.
- [21] B. Ricceri, On three critical points theorem, Arch. Math. (Basel) 75 (2000), 220–226.
- [22] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000), 1485–1494.
- [23] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084–3089.
- [24] M. Ružicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer--Verlag, Berlin, 2000.
- [25] N. Tsouli, O. Chakrone, O. Darhouche, M. Rahmani, Existence of multiple solutions for the p-Laplacian with nonlinear boundary conditions, J. Adv. Res. Dyn. Control Syst. 6 (2014) 1, 39–47.
- [26] N. Tsouli, O. Chakrone, O. Darhouche, M. Rahmani, Existence and multiplicity of solutions for a Robin problem involving the p(x)-Laplace operator, Hindawi Publishing Corporation Conference Papers in Mathematics Volume 2013, Article ID 231898, 7 pp.
- [27] L.L. Wang, Y.H. Fan, W.G. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal. 71 (2009), 4259-4270.
- [28] M. Willem, Minimax Theorems, Birkhauser, Basel, 1996.
- [29] W.M. Winslow, Induced fibration of suspensions, J. Appl. Phys. 20 (1949), 1137-1140.
- [30] Jinghua Yao, Solution for Neumann boundary problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008), 1271–1283.
- [31] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv 29 (1987), 33–66.
- [32] V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, translated from Russian by G.A. Yosifian, Springer-Verlag, Berlin, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ce65cc7-3963-4dfe-822c-4c692f4c4236