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Abstract. In this paper we study the following nonlinear boundary-value problem

−∆p(x)u = λf(x, u) in Ω,

|∇u|p(x)−2 ∂u

∂ν
+ β(x)|u|p(x)−2u = µg(x, u) on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ∂u
∂ν

is the outer unit normal
derivative on ∂Ω, λ, µ are two real numbers such that λ2 +µ2 6= 0, p is a continuous function
on Ω with infx∈Ω p(x) > 1 , β ∈ L∞(∂Ω) with β− := infx∈∂Ω β(x) > 0 and f : Ω × R → R,
g : ∂Ω × R → R are continuous functions. Under appropriate assumptions on f and g, we
obtain the existence and multiplicity of solutions using the variational method. The positive
solution of the problem is also considered.

Keywords: critical points, variational method, p(x)-Laplacian, generalized Lebesgue-
-Sobolev spaces.
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1. INTRODUCTION

This paper is devoted to finding existence and multiplicity results for the following
nonlinear problem

−∆p(x)u = λf(x, u) in Ω,

|∇u|p(x)−2 ∂u

∂ν
+ β(x)|u|p(x)−2u = µg(x, u) on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded smooth domain, ∂u
∂ν is the outer unit normal deriva-

tive on ∂Ω, λ, µ ∈ R such that λ2 + µ2 6= 0, p is a continuous function on Ω
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with p− := infx∈Ω p(x) > 1 and β ∈ L∞(∂Ω) with β− := infx∈∂Ω β(x) > 0. The
main interest in studying such problems arises from the presence of the p(x)-Laplace
operator div(|∇u|p(x)−2∇u), which is a natural extension of the classical p-Laplace
operator div(|∇u|p−2∇u) obtained in the case when p is a positive constant. However,
such generalizations are not trivial since the p(x)-Laplace operator possesses a more
complicated structure than p-Laplace operator, for example it is inhomogeneous.

In recent years increasing attention has been paid to the study of differential
and partial differential equations involving variable exponent conditions. The inter-
est in studying such problems was stimulated by their applications in elastic me-
chanics, fluid dynamics and the calculus of variations, for information on modelling
physical phenomena by equations involving the p(x)-growth condition we refer to
[1, 8, 10, 17, 19, 20, 24, 29, 31, 32]. In the past decades a vast amount of literature that
deal with the existence for problems of the type −∆p(x)u = f(x, u) with different
boundary conditions (Dirichlet, Neumann, Robin, nonlinear, etc.) have appeared. See,
for instance [9, 11,14,16,27,30] and references therein.

In [16], the authors have studied the problem (1.1) with g(x, u) ≡ 0. Using the
variational approach based on the nonsmooth critical point theory for locally Lipschitz
functions, they obtain the existence of at least two nontrivial solutions. This same
problem has been studied in [26]. Under appropriate assumptions on f , and using
variational methods, we have obtained important results on existence and multiplicity
of solutions. In [3], the authors considered the problem (1.1) with λf(x, u) ≡ |u|p(x)−2u
and β(x) ≡ 0. Using Ricceri’s variational principle, they establish the existence of at
least three solutions of the problem. If β(x) ≡ 0 and µg(x, u) ≡ 0, the problem (1.1)
becomes the nonlinear Neumann boundary value problem. It was studied in [27]. Using
the three critical point theorem due to Ricceri, under the appropriate assumptions on
f , the authors establish the existence of at least three solutions of this problem.

The purpose of this paper is to prove the existence and multiplicity results of
solutions to the problem (1.1) under appropriate assumptions on f and g following
ideas from [30]. These results extend some of the results in [25] for the p-Laplacian.

Next, we make the following assumptions on f and g:

(f0) f : Ω×R→ R satisfies the Carathéodory condition and there exist two constants
C1 ≥ 0, C2 > 0 such that

|f(x, s)| ≤ C1 + C2|s|α(x)−1 for all (x, s) ∈ Ω× R,

where α(x) ∈ C+(Ω) and α(x) < p∗(x), for all x ∈ Ω, where

p∗(x) =

{
Np(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N ;

(f1) there exist M1 > 0, θ1 > p+ such that

0 < θ1F (x, s) ≤ sf(x, s) for all |s| ≥M1, x ∈ Ω;

(f2) f(x, s) = o(|s|p+−1), s→ 0 for x ∈ Ω uniformly;
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(f3) f(x,−s) = −f(x, s) for all x ∈ Ω, s ∈ R;
(g0) g : ∂Ω × R → R satisfies the Carathéodory condition and there exist two con-

stants C ′1 ≥ 0, C ′2 > 0 such that

|g(x, s)| ≤ C ′1 + C ′2|s|γ(x)−1 for all (x, s) ∈ ∂Ω× R,

where γ(x) ∈ C+(∂Ω) and γ(x) < p∂(x), for all x ∈ ∂Ω, where

p∂(x) =

{
(N−1)p(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N ;

(g1) there exist M2 > 0, θ2 > p+ such that

0 < θ2G(x, s) ≤ sg(x, s) for all |s| ≥M2, x ∈ ∂Ω;

(g2) g(x, s) = o(|s|p+−1), s→ 0 for x ∈ ∂Ω uniformly;
(g3) g(x,−s) = −g(x, s) for all x ∈ ∂Ω, s ∈ R.

Let H be the energy functional corresponding to problem (1.1).
The main results of this paper are the following:

Theorem 1.1. If (f0), (g0) hold and α+, γ+ < p−, then problem (1.1) has a weak
solution.

Theorem 1.2. If (f0), (f1), (f2), (g0), (g1), (g2) hold and α−, γ− > p+, λ, µ ≥ 0, then
problem (1.1) has a nontrivial weak solution.

Theorem 1.3. If (f0), (f1), (f3), (g0), (g1), (g3) hold and α−, γ− > p+, λ, µ ≥ 0, then
H has a sequence of critical points (±un) such that H(±un) → ∞ as n → ∞.
Meanwhile, problem (1.1) has infinite many pairs of weak solutions.

Theorem 1.4. Let α(x) ∈ C+(Ω), γ(x) ∈ C+(∂Ω) and

α(x) < p∗(x) for all x ∈ Ω; γ(x) < p∂(x) for all x ∈ ∂Ω.

If f(x, u) = |u|α(x)−2u, g(x, u) = |u|γ(x)−2u, α− > p+, and γ+ < p−, then we have:

(i) for all λ > 0 and µ ∈ R, problem (1.1) has a sequence of weak solutions (±uk)
such that H(±uk)→∞ as k →∞;

(ii) for all µ > 0 and λ ∈ R, problem (1.1) has a sequence of weak solutions (±vk)
such that H(±vk) < 0, and H(±vk)→ 0 as k →∞.

Theorem 1.5. If (f0), (g0) hold and α+, γ+ < p−, then problem (1.1) has a nonne-
gative weak solution.

Theorem 1.6. If (f0), (f1), (f2), (g0), (g1), (g2) hold and α−, γ− > p+, λ, µ ≥ 0, then
problem (1.1) has a nonnegative nontrivial weak solution.

This article is organized as follows. In Section 2, we introduce some necessary pre-
liminary knowledge on variable exponent Lebesgue and Sobolev spaces. In Section 3,
we will give the proof of Theorems 1.1–1.4. In Section 4, we will give the proof of
Theorems 1.5–1.6.
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2. PRELIMINARIES

For completeness, we first recall some facts on the variable exponent spaces Lp(x)(Ω)
andW 1,p(x)(Ω). Suppose that Ω is a bounded open domain of RN with smooth bound-
ary ∂Ω and p ∈ C+(Ω), where

C+(Ω) =
{
p ∈ C(Ω): inf

x∈Ω
p(x) > 1

}
.

Denote by p− := infx∈Ω p(x) and p+ := supx∈Ω p(x). Define the variable exponent
Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) =
{
u : Ω→ R is measurable and

∫

Ω

|u|p(x)dx < +∞
}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
τ > 0:

∫

Ω

∣∣∣u
τ

∣∣∣
p(x)

dx ≤ 1
}
.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

‖u‖ = inf
{
τ > 0:

∫

Ω

( ∣∣∣∣
∇u
τ

∣∣∣∣
p(x)

+
∣∣∣u
τ

∣∣∣
p(x) )

dx ≤ 1
}
,

‖u‖ = |∇u|p(x) + |u|p(x).

We refer the reader to [9, 12, 13] for the basic properties of the variable exponent
Lebesgue and Sobolev spaces.

Lemma 2.1 ([13]). Both (Lp(x)(Ω), | · |p(x)) and (W 1,p(x)(Ω), ‖ · ‖) are separable,
reflexive and uniformly convex Banach spaces.

Lemma 2.2 ([13]). Hölder inequality holds, namely
∫

Ω

|uv|dx ≤ 2|u|p(x)|v|p′(x) for all u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω),

where 1
p(x) + 1

p′(x) = 1.

Now, we introduce a norm, which will be used later. For u ∈W 1,p(x)(Ω), define

‖u‖β = inf



 λ > 0 :

∫

Ω

∣∣∣∣
∇u(x)

λ

∣∣∣∣
p(x)

dx+

∫

∂Ω

β(x)

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dσx ≤ 1



 .

Then, by Theorem 2.1 in [9], ‖u‖β is also a norm on W 1,p(x)(Ω) which is equivalent
to ‖u‖.
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Lemma 2.3 (see [13,14,30]).

(1) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbedding fromW 1,p(x)(Ω)
to Lq(x)(Ω) is compact and continuous.

(2) If q ∈ C+(Ω) and q(x) < p∂(x) for any x ∈ ∂Ω, then the trace imbedding from
W 1,p(x)(Ω) to Lq(x)(∂Ω) is compact and continuous.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the mapping defined by

Iβ(u) =

∫

Ω

|∇u|p(x)dx+

∫

∂Ω

β(x)|u|p(x) dσx for all u ∈W 1,p(x)(Ω).

Lemma 2.4 ([9]).

(1) ‖u‖β ≥ 1⇒ ‖u‖p
−

β ≤ Iβ(u) ≤ ‖u‖p
+

β ,

(2) ‖u‖β ≤ 1⇒ ‖u‖p
+

β ≤ Iβ(u) ≤ ‖u‖p
−

β ,
(3) ‖u‖β → 0 if and only if Iβ(u)→ 0 (as k →∞),
(4) |u(x)|p(x) →∞ if and only if Iβ(u)→∞ (as k →∞).

Remark 2.5. From (1) and (2) of the previous lemma, one can easily deduce that

‖u‖β < (=;>)1⇔ Iβ(u) < (=;>)1. (2.1)

Theorem 2.6. If f : Ω× R→ R is a continuous function satisfying

|f(x, s)| ≤ C(1 + |s|α(x)−1) for all (x, s) ∈ Ω× R,

where C ≥ 0 is a constant, α(x) ∈ C+(Ω) such that for all x ∈ Ω, α(x) < p∗(x).
Set X = W 1,p(x)(Ω), F (x, u) =

∫ u
0
f(x, t)dt, and ψ(u) = −

∫
Ω
F (x, u(x)) dx. Then

ψ(u) ∈ C1(X,R) and Dψ(u, ϕ) = 〈ψ′(u), ϕ〉 = −
∫

Ω
f(x, u(x))ϕdx. Moreover, the

operator ψ′ : X → X∗ is compact.

Proof. It is easily adapted from that of [27, Theorem 2.1].

Theorem 2.7. If g : ∂Ω× R→ R is a Carathéodory function and

|g(x, s)| ≤ C”(1 + |s|α(x)−1) for all (x, s) ∈ ∂Ω× R,

where C” is a positive constant and α(x) ∈ C+(∂Ω) such that for all x ∈ ∂Ω, α(x) <
p∂(x). Set X = W 1,p(x)(Ω), G(x, u) =

∫ u
0
g(x, t)dt, ψ(u) = −

∫
∂Ω
G(x, u(x))dσx.

Then ψ(u) ∈ C1(X,R) and Dψ(u, ϕ) = 〈ψ′(u), ϕ〉 = −
∫
∂Ω
g(x, u(x))ϕdσx. Moreover,

the operator ψ′ : X → X∗ is compact.

Proof. It is easily adapted from that of [2, Theorem 2.9].

Let X = W 1,p(x)(Ω) and define

φ(u) =

∫

Ω

1

p(x)
|∇u|p(x) dx+

∫

∂Ω

β(x)

p(x)
|u|p(x) dσx,

ψ(u) = −
∫

Ω

F (x, u) dx, J(u) = −
∫

∂Ω

G(x, u) dσx,



626 Najib Tsouli and Omar Darhouche

where F (x, t) =
t∫

0

f(x, s)ds, and G(x, t) =
t∫

0

g(x, s)ds. It is easy to see that φ ∈
C1(X,R) and

(φ′(u), v) =

∫

Ω

|∇u|p(x)−2∇u∇v dx+

∫

∂Ω

β(x)|u|p(x)−2uv dσx, v ∈ X.

Moreover, we have the following proposition.

Proposition 2.8 ([16, Proposition 2.2]).

(1) φ′ : X → X∗ is a continuous, bounded and strictly monotone operator.
(2) φ′ : X → X∗ is a mapping of type (S)+, that is, if un ⇀ u in X and

lim sup
n→∞

(φ′(un)− φ′(u), un − u) ≤ 0, then un → u in X.

(3) φ′ : X → X∗ is a homeomorphism.

Under the conditions (f0) and (g0), and from Theorem 2.6 and Theorem 2.7, ψ
and J are continuously Gâteaux differentiable functionals whose Gâteaux derivative
is compact, and we have

〈ψ′(u), v〉 = −
∫

Ω

f(x, u)v dx, 〈J ′(u), v〉 = −
∫

∂Ω

g(x, u)v dσx.

The energy functional corresponding to problem (1.1) is defined on X as

H(u) = φ(u) + λψ(u) + µJ(u).

The functional H is of class C1(X,R), and the weak solution of problem (1.1) corre-
sponds to the critical point of the functional H.

Definition 2.9. We say that u ∈W 1,p(x)(Ω) is a weak solution of the problem (1.1)
if for all v ∈W 1,p(x)(Ω)

∫

Ω

|∇u|p(x)−2∇u∇v dx+

∫

∂Ω

β(x)|u|p(x)−2uv dσx = λ

∫

Ω

f(x, u)v dx+µ

∫

∂Ω

g(x, u)v dσx,

where dσx is the measure on the boundary ∂Ω.

Remark 2.10. In the following sections, the symbols C, D, M denote the generic
nonnegative of positive constants, which may not be the same at each occurrence.

3. EXISTENCE AND MULTIPLICITY OF SOLUTIONS

In this section, we shall prove Theorems 1.1–1.4. By using the variational principle,
we prove the existence and multiplicity of results for problem (1.1).
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Proof of Theorem 1.1. From (f0) and (g0), there exist C > 0 such that

|F (x, t)| ≤ C(1 + |t|α(x)), (x, t) ∈ Ω× R,

|G(x, t)| ≤ C(1 + |t|γ(x)), (x, t) ∈ ∂Ω× R.

Obviously, H is weakly lower semicontinuous. It suffices to show that H is coercive.
Let u ∈ X be such that ‖u‖β > 1. Then

H(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx+

+

∫

∂Ω

1

p(x)
β(x)|u|p(x)dσx −

∫

Ω

λF (x, u)dx−
∫

∂Ω

µG(x, u)dσx ≥

≥ 1

p+
‖u‖p

−

β − |λ|
∫

Ω

C(1 + |u|α(x))dx− |µ|
∫

∂Ω

C(1 + |u|γ(x))dσx ≥

≥ 1

p+
‖u‖p

−

β − |λ|C‖u‖α
+

β − |µ|C‖u‖γ
+

β −M.

So H(u) → ∞ as ‖u‖β → ∞, since α+, γ+ < p−. Then H is coercive and H has a
minimum point u in X which is a weak solution of problem (1.1).

Corollary 3.1. Under the assumptions in Theorem 1.1, if λ, µ 6= 0, and there exist
two positive constants d1, d2 < p− such that:

lim inf
t→0

sgn(λ)F (x, t)

|t|d1 > 0 for x ∈ Ω uniformly, (3.1)

lim inf
t→0

sgn(µ)G(x, t)

|t|d2 > 0 for x ∈ ∂Ω uniformly, (3.2)

then the problem (1.1) has a nontrivial weak solution.

Proof. From Theorem 1.1 we know that H has a global minimum point u. It suffices
to show that u is nontrivial. From (3.1) and (3.2), for 0 < t < 1 small enough, there
exists a positive constant C such that

sgn(λ)F (x, t) ≥ C|t|d1 , sgn(µ)G(x, t) ≥ C|t|d2 .
Choose u0 ≡M > 0, then u0 ∈ X. Then we have

H(tu0) ≤ tp
−

p−

∫

∂Ω

β(x)|M |p(x)dσx − |λ|
∫

Ω

(sgn(λ))F (x, tM)dx−

− |µ|
∫

∂Ω

(sgn(µ))G(x, tM)dσx ≤

≤ tp
−

p−

∫

∂Ω

β(x)|M |p(x)dσx − |λ|
∫

Ω

C|tM |d1dx− |µ|
∫

∂Ω

C|tM |d2dσx ≤

≤ D1t
p− − |λ|D2t

d1 − |µ|D3t
d2 .
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Since d1, d2 < p−, there exists 0 < t0 < 1 small enough such that H(t0u0) < 0. So
the global minimum point u of H is nontrivial.

Remark 3.2. The conclusion of Corollary 3.1 remains valid if we suppose one of the
following conditions:

(i) µ = 0, λ 6= 0 and there exist a positive constant d1 < p− such that (3.1) holds,
(ii) λ = 0, µ 6= 0 and there exist a positive constant d2 < p− such that (3.2) holds.

Remark 3.3. If f(x, u) = sgn(λ)|u|α(x)−2u and g(x, u) = sgn(µ)|u|γ(x)−2u with
α+, γ+ < p−, then the conditions in Corollary 3.1 can be fulfilled.

To prove Theorem 1.2, we need the following lemma.

Lemma 3.4. If (f0), (f1), (g0), (g1) hold and λ, µ ≥ 0, then H satisfies the (PS)
condition.

Proof. Suppose that (un) ⊂ X is a (PS) sequence, i.e.

sup |H(un)| ≤M, H ′(un)→ 0 as n→∞.

Let us show that (un) is bounded so as to verify it is precompact in X. By
Lemma 2.3, and Theorems 2.6, 2.7, we know that ψ and J are booth weakly con-
tinuous and their derivative operators are compact. By Proposition 2.8, we deduce
that H ′ = φ′ + λψ′ + µJ ′ is also of type (S+). For n large enough, we have

M + 1 ≥ H(un)− 1

θ
〈H ′(un), un〉+

1

θ
〈H ′(un), un〉 =

=

∫

Ω

1

p(x)
|∇un|p(x)dx+

∫

∂Ω

β(x)

p(x)
|un|p(x)dσx−

− λ
∫

Ω

F (x, un)dx− µ
∫

∂Ω

G(x, un)dσx−

− 1

θ

[ ∫

Ω

|∇un|p(x)dx+

∫

∂Ω

β(x)|un|p(x)dσx−

− λ
∫

Ω

f(x, un)undx− µ
∫

∂Ω

g(x, un)undσx

]
+

+
1

θ
〈H ′(un), un〉 ≥

≥
(

1

p+
− 1

θ

)
‖un‖p

−

β −
1

θ
‖H ′(un)‖X∗‖un‖β − C ≥

≥
(

1

p+
− 1

θ

)
‖un‖p

−

β −
1

θ
‖un‖β − C,

where θ = min{θ1, θ2}. From the inequality above, we know that (un) is bounded in
X since θ > p+. This completes the proof.
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Proof of Theorem 1.2. We will use the mountain pass theorem (see [4, 28]). By the
previous lemma, we know thatH satisfies the (PS) condition. So it suffices to verify the
geometric conditions in the mountain pass theorem. We have the following compact
embedding

W 1,p(x)(Ω) ↪→ Lp
+

(Ω), W 1,p(x)(Ω) ↪→ Lp
+

(∂Ω),

since

p+ < α− ≤ α(x) < p∗(x) for all x ∈ Ω; p+ < γ− ≤ γ(x) < p∂(x) for all x ∈ ∂Ω.

So there exists a constant C > 0 such that

|u|Lp+ (Ω) ≤ C‖u‖β , |u|Lp+ (∂Ω) ≤ C‖u‖β for all u ∈ X.

Conditions (f0), (f2) and (g0), (g2) assure that there exists an arbitrary constant 0 <
ε < 1 and two positive constants (both denoted by C(ε)) such that

|F (x, t)| ≤ ε|t|p+ + C(ε)|t|α(x) for all (x, t) ∈ Ω× R,

|G(x, t)| ≤ ε|t|p+ + C(ε)|t|γ(x) for all (x, t) ∈ ∂Ω× R.

So for ‖u‖β small enough (‖u‖β < 1). We have

H(u) ≥ 1

p+
‖u‖p

+

β − λ
∫

Ω

F (x, u)dx− µ
∫

∂Ω

G(x, u)dσx ≥

≥ 1

p+
‖u‖p

+

β − λ
∫

Ω

(
ε|u|p+ + C(ε)|u|α(x)

)
dx−

− µ
∫

∂Ω

(
ε|u|p+ + C(ε)|u|γ(x)

)
dσx ≥

≥ 1

p+
‖u‖p

+

β − (λεC + µεC)‖u‖p
+

β − λC(ε)C‖u‖α−β − µC(ε)C‖u‖γ
−

β .

Choose ε > 0 small enough such that 0 < λεC + µεC < 1
2p+ . Then we obtain

H(u) ≥ 1

2p+
‖u‖p

+

β − C(λ, µ, ε)C(‖u‖α−β + ‖u‖γ
−

β ) ≥

≥ ‖u‖p
+

β

(
1

2p+
− C(λ, µ, ε)C(‖u‖α

−−p+
β + ‖u‖γ

−−p+
β )

)
.

Since p+ < α−, γ−, the function

t 7→ 1

2p+
− C(λ, µ, ε)C(tα

−−p+ + tγ
−−p+)

is strictly positive in a neighborhood of zero. It follows that there exist r > 0 and
δ > 0 such that

H(u) ≥ δ for all u ∈ X : ‖u‖β = r.
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Now, to apply the mountain pass theorem, we must prove that

H(tu)→ −∞ as t→ +∞,

for a certain u ∈ X. From conditions (f1) and (g1) we have for suitable positive
constants C,D

F (x, s) ≥ C|s|θ1 −D for all (x, s) ∈ Ω× R,
G(x, s) ≥ C|s|θ2 −D for all (x, s) ∈ ∂Ω× R.

Let u ∈ X and t > 1. We have

H(tu) =

∫

Ω

tp(x)

p(x)
|∇u|p(x)dx+

∫

∂Ω

tp(x)β(x)

p(x)
|u|p(x)dσx−

− λ
∫

Ω

F (x, tu)dx− µ
∫

∂Ω

G(x, tu)dσx ≤

≤ tp
+

p−

(∫

Ω

|∇u|p(x)dx+

∫

∂Ω

β(x)|u|p(x)dσx

)
−

− λ
∫

Ω

(C|tu|θ1 −D)dx− µ
∫

∂Ω

(C|tu|θ2 −D)dσx ≤

≤ tp
+

p−

(∫

Ω

|∇u|p(x)dx+

∫

∂Ω

β(x)|u|p(x)dσx

)
−

− tθ1λC
∫

Ω

|u|θ1dx− tθ2µC
∫

∂Ω

|u|θ2dσx +M.

The fact that θ1, θ2 > p+ implies

H(tu)→ −∞ as t→ +∞.

It follows that there exists e ∈ X such that ‖e‖β > r and H(e) < 0. According to the
mountain pass theorem, H admits a critical value τ ≥ δ which is characterized by

τ = inf
h∈Γ

sup
t∈[0,1]

H(h(t)),

where
Γ = {h ∈ C([0, 1], X) : h(0) = 0 and h(1) = e} .

The proof is complete.

Proof of Theorem 1.3. Since X is a separable and reflexive Banach space [7,12], there
exist {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗ such that

fn(em) = δn,m =

{
1, if n = m,

0, if n 6= m.
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X = span{en : n = 1, 2, . . . }, X∗ = spanW
∗{fn : n = 1, 2, . . . }.

For n = 1, 2, . . . denote by

Xn = span{en}, Yn = ⊕nj=1Xj , Zn = ⊕∞j=nXj .

Then we have the following lemma.

Lemma 3.5 ([15, Proposition 3.5]). If α(x) ∈ C+(Ω), α(x) < p∗(x) for all x ∈ Ω,
and γ(x) ∈ C+(∂Ω), γ(x) < p∂(x) for all x ∈ ∂Ω, denote

αk = sup
{
|u|Lα(x)(Ω) : ‖u‖β = 1, u ∈ Zk

}
,

γk = sup
{
|u|Lγ(x)(∂Ω) : ‖u‖β = 1, u ∈ Zk

}
.

Then limk→∞ αk = 0 and limk→∞ γk = 0.

Now, we return to the proof of Theorem 1.3. To do that, we will use the Fountain
theorem (see [28]). Obviously, H is an even functional and satisfies the (PS) condition.
We will prove that if k is large enough, then there exist ρk > rk > 0 such that

(A1) bk := inf {H(u) : u ∈ Zk, ‖u‖β = rk} → +∞ as k → +∞,
(A2) ak := max {H(u) : u ∈ Yk, ‖u‖β = ρk} ≤ 0 as k → +∞.

(A1) For u ∈ Zk such that ‖u‖β = rk > 1, by conditions (f0) and (g0), we have

H(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

∂Ω

β(x)

p(x)
|u|p(x)dσx − λ

∫

Ω

F (x, u)dx− µ
∫

∂Ω

G(x, u)dσx ≥

≥ 1

p+
‖u‖p

−

β − λ
∫

Ω

C(1 + |u|α(x))dx− µ
∫

∂Ω

C(1 + |u|γ(x))dσx ≥

≥ 1

p+
‖u‖p

−

β − λC max
{
|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω)

}
−

− µC max
{
|u|γ

+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)

}
−M ≥

≥ 1

p+
‖u‖p

−

β −

− C(λ, µ) max
{
|u|α+

Lα(x)(Ω), |u|α
−

Lα(x)(Ω), |u|
γ+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)

}
−M.

If max
{
|u|α+

Lα(x)(Ω)
, |u|α−

Lα(x)(Ω)
, |u|γ

+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)

}
= |u|α+

Lα(x)(Ω)
, then we have

H(u) ≥ 1

p+
‖u‖p

−

β − C(λ, µ)αα
+

k ‖u‖α
+

β −M.

If we choose rk = (α+C(λ, µ)αα
+

k )
1

p−−α+ , we obtain

H(u) ≥ rp
−

k

(
1

p+
− 1

α+

)
−M.
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Since αk → 0, rk → +∞ and p+ < α− ≤ α+, we have H(u) → +∞ as k → +∞. In
the other three cases, we can deduce in the same way that

H(u)→∞, since αk → 0, γk → 0 as k → +∞.

So (A1) holds.
(A2) Conditions (f1) and g1 implies that there exist positive constants C,D such

that

F (x, s) ≥ C|s|θ1 −D for all (x, s) ∈ Ω× R,

G(x, s) ≥ C|s|θ2 −D for all (x, s) ∈ ∂Ω× R.

Let u ∈ Yk be such that‖u‖β = ρk > rk > 1. Then

H(u) ≤ 1

p−
‖u‖p

+

β − λ
∫

Ω

(C|u|θ1 −D) dx− µ
∫

∂Ω

(C|u|θ2 −D) dσx ≤

≤ 1

p−
‖u‖p

+

β − λC
∫

Ω

|u|θ1 dx− µC
∫

∂Ω

|u|θ1 dσx +M.

Since the space Yk has finite dimension, then all norms are equivalents and we obtain

H(u) ≤ 1

p−
‖u‖p

+

β − λC‖u‖θ1β − µC‖u‖θ2β +M.

Finally,

H(u)→ −∞ as ‖u‖β → +∞, u ∈ Yk

since θ1, θ2 > p+. So the assertion (A2) is then satisfied and the proof of Theorem 1.3
is complete.

Proof of Theorem 1.4. (i) As in the proof of Theorem 1.3, we will use in a similar
way, the Fountain theorem. So, it suffices to verify the (PS) condition. Assume

(un) ⊂ X, supH(un) ≤M, H ′(un)→ 0 as n→ +∞.
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For n large enough, we have

M + 1 ≥ H(un)− 1

α−
〈H ′(un), un〉+

1

α−
〈H ′(un), un〉 =

=

∫

Ω

1

p(x)
|∇un|p(x)dx+

∫

∂Ω

β(x)

p(x)
|un|p(x)dσx−

− λ
∫

Ω

1

α(x)
|un|α(x)dx− µ

∫

∂Ω

1

γ(x)
|un|γ(x)dσx−

− 1

α−

[ ∫

Ω

|∇un|p(x)dx+

∫

∂Ω

β(x)|un|p(x)dσx−

− λ
∫

Ω

|un|α(x)dx− µ
∫

∂Ω

|un|γ(x)dσx

]
+

+
1

α−
〈H ′(un), un〉 ≥

≥
(

1

p+
− 1

α−

)
‖un‖p

−

β − C‖un‖
γ+

β −
1

α−
‖H ′(un)‖X∗‖un‖β ≥

≥
(

1

p+
− 1

α−

)
‖un‖p

−

β − C‖un‖
γ+

β −
1

α−
‖un‖β .

Since α− > p+, γ+ < p−, we know that (un) is bounded in X. This completes the
proof.

(ii) We will use the dual of the Fountain theorem. We need to prove thatH satisfies
the (PS)∗c condition (see [28]) and there exist ρk > rk > 0 such that for k large enough
we have

(B1) ak := max {H(u) : u ∈ Yk, ‖u‖β = rk} < 0,
(B2) bk := inf {H(u) : u ∈ Zk, ‖u‖β = ρk} ≥ 0,
(B3) dk := max {H(u) : u ∈ Yk, ‖u‖β ≤ ρk} → 0 as k → +∞.

Let us show that (B1) holds. We assume ‖u‖β < 1 for convenience. For u ∈ Yk,
we have

H(u) =

∫

Ω

1

p(x)
|∇un|p(x)dx+

∫

∂Ω

β(x)

p(x)
|un|p(x)dσx−

− λ
∫

Ω

1

α(x)
|un|α(x)dx− µ

∫

∂Ω

1

γ(x)
|un|γ(x)dσx ≤

≤ 1

p−
‖u‖p

−

β +
|λ|
α−

∫

Ω

|u|α(x)dx− µ

γ+

∫

∂Ω

|u|γ(x)dσx.

If we choose rk > 0 small enough, we get ak := max {H(u) : u ∈ Yk, ‖u‖β = rk} < 0,
since dimYk <∞ and p− > γ+, α− > p+. So (B1) holds.
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(B2) Let u ∈ Zk, then

H(u) ≥ 1

p+
‖u‖p

+

β −
|λ|
α−

∫

Ω

|u|α(x)dx− µ

γ−

∫

∂Ω

|u|γ(x)dσx ≥

≥ 1

p+
‖u‖p

+

β −
C|λ|
α−
‖u‖α−β − µ

γ−

∫

∂Ω

|u|γ(x)dσx ≥

≥ 1

p+
‖u‖p

+

β −
C|λ|
α−
‖u‖α−β − µ

γ−
max{|u|γ

+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)
}.

There exists ρ0 > 0 small enough such that C|λ|
α− ‖u‖α

−
β ≤ 1

2p+ ‖u‖
p+

β as 0 < ρ =

‖u‖β ≤ ρ0, since α− > p+. Then we have

H(u) ≥ 1

2p+
‖u‖p

+

β −
µ

γ−
max{|u|γ

+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)
}.

If max{|u|γ
+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)
} = |u|γ

+

Lγ(x)(∂Ω)
, then

H(u) ≥ 1

2p+
‖u‖p

+

β −
µ

γ−
γγ

+

k ‖u‖
γ+

β .

Choose ρk =
(

2p+µγk
γ−

γ+) 1

p+−γ+ , then H(u) ≥ 0. Since p− > γ+, γk → 0, we get

ρk → 0 as k → ∞. The case max{|u|γ
+

Lγ(x)(∂Ω)
, |u|γ

−

Lγ(x)(∂Ω)
} = |u|γ

−

Lγ(x)(∂Ω)
is similar,

so (B2) holds.
(B3) From the proof above and the fact that Yk∩Zk 6= ∅, we know that for u ∈ Zk,

‖uk‖β ≤ ρk small enough

H(u) ≥ − µ

γ−
γγ

+

k ‖u‖
γ+

β or − µ

γ−
γγ
−

k ‖u‖
γ−

β .

Since γk → 0 and ρk → 0 as k → ∞, (B3) holds and obviously we can choose
ρk > rk > 0.

Now, to verify the (PS)∗c condition, we consider a sequence (unj ) ⊂ X such that

nj →∞, unj ∈ Ynj , H(unj )→ C, (H|Ynj )′(unj )→ 0.

Assume ‖u‖β > 1, then for n large enough and λ ≥ 0 we have

C + 1 ≥ H(unj )−
1

α−
〈H ′(unj ), unj 〉+

1

α−
〈H ′(unj ), unj 〉 ≥

≥
(

1

p+
− 1

α−

)
‖unj‖p

−

β −D‖unj‖
γ+

β −
1

α−
‖unj‖β .

Since α− > p+ and p− > γ+, we deduce that (unj ) is bounded in X.
If λ < 0, then for n large enough, we have

C + 1 ≥ H(unj )−
1

α+
〈H ′(unj ), unj 〉+

1

α+
〈H ′(unj ), unj 〉.
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Going if necessary to a subsequence, we can assume that unj ⇀ u weakly in X. As
X = ∪njYnj , we can choose vnj ∈ Ynj such that vnj → u. Hence

lim
nj→∞

H ′(unj )(unj − u) = lim
nj→∞

H ′(unj )(unj − vnj ) + lim
nj→∞

H ′(unj )(vnj − u) =

= lim
nj→∞

(H|Ynj )′(unj )(unj − vnj ) = 0.

Then we can conclude that unj → u since H ′ is of type (S+). Moreover, we have
H ′(unj ) → H ′(u). Now, it only remains to prove that H ′(u) = 0. For an arbitrary
wk ∈ Yk, we have for nj ≥ k

H ′(u)wk = (H ′(u)−H ′(unj ))wk +H ′(unj )wk =

= (H ′(u)−H ′(unj ))wk + (H|Ynj )′(unj )wk.

Going to the limit on the right side of the above equation, one get

H ′(u)wk = 0 for all wk ∈ Yk,
so H ′(u) = 0, this shows that the functional H satisfies the (PS)∗c condition for every
c ∈ R. The proof of Theorem 1.4 is complete.

4. EXISTENCE OF NONNEGATIVE SOLUTION AND POSITIVE SOLUTION

In this section, we will assume that f and g satisfy the following condition:

f(x, 0) = 0 for all x ∈ Ω, and g(x, 0) = 0 for all x ∈ ∂Ω.

Define

f+(x, t) =

{
f(x, t), if t ≥ 0,

0, if t < 0,

g+(x, t) =

{
g(x, t), if t ≥ 0,

0, if t < 0.

Let F+(x, t) =
t∫

0

f+(x, s)ds and G+(x, t) =
t∫

0

g+(x, s)ds. Consider the following prob-

lem:
−∆p(x)u = λf+(x, u) in Ω,

|∇u|p(x)−2 ∂u

∂ν
+ β(x)|u|p(x)−2u = µg+(x, u) on ∂Ω,

(4.1)

The energy functional associated with problem (4.1) is

H+(u) =

∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

∂Ω

1

p(x)
β(x)|u|p(x)dσx−

−
∫

Ω

λF+(x, u)dx−
∫

∂Ω

µG+(x, u)dσx.
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Proof of Theorem 1.5. By Theorem 1.1, we know that problem (4.1) has a weak so-
lution u. Multiplying the equation in (4.1) by u− := max{−u, 0} and integrating over
Ω, in view of the boundary condition, we get

∫

Ω

|∇u−|p(x)dx+

∫

∂Ω

β(x)|u−|p(x)dσx = 0,

which implies that ‖u−‖β = 0 and then u− = 0 in X. So we conclude that u is a
nonnegative solution of the problem (4.1).

By the same arguments, and using Theorem 1.2, we prove Theorem 1.6.
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