Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present study the adsorption of Reactive Blue 19 dye on the hydroxyapatite (HAp) nanopowders was investigated. The batch adsorption experiments were performed by monitoring the adsorbent dosage, contact time, dye solution concentration, pH and temperature. At pH 3 and 20ºC, high dye removal rates of about 95.58% and 86.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicated the dye adsorption onto nanohydroxyapatite samples to follow a pseudo-second order model. The Langmuir isotherm was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity of uncalcined and calcined nanohydroxyapatite samples has been found to be 90.09 mg/g and 74.97 mg/g, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--11
Opis fizyczny
Bibliogr. 32 poz., fot., tab., wykr.
Twórcy
autor
- Gheorghe Asachi Technical University of Iasi, Romania Faculty of Chemical Engineering and Environmental Protection
autor
- Gheorghe Asachi Technical University of Iasi, Romania Faculty of Chemical Engineering and Environmental Protection
autor
- Gheorghe Asachi Technical University of Iasi, Romania Faculty of Chemical Engineering and Environmental Protection
Bibliografia
- [1]. Allen, S.J. & Koumanova, B. (2005). Decolourisation of water//wastewater using adsorption (review), Journal of the University of Chemical Technology and Metallurgy, 40, pp. 175–192.
- [2]. Barka, N., Qourzal, S., Assabbane, A., Nounah, A. & Aît-Ichou, Y. (2008). Adsorption of Disperse Blue SBL dye by synthesized poorly crystalline hydroxyapatite, Journal of environmental sciences (China), 20, pp. 1268–1272.
- [3]. Bell, L.C., Posner, A.M. & Quirk, J.P. (1973). The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions, Journal of Colloid and Interface Science, 42, pp. 250–261.
- [4]. Bengtsson, Å. & Sjöberg, S. (2009). Surface complexation and proton-promoted dissolution in aqueous apatite systems, Pure and Applied Chemistry, 81, pp. 1569–1584.
- [5]. Bina, B., Amin, M.M., Rashidi, A. & Pourzamani, H. (2012). Benzene and toluene removal by carbon nanotubes from aqueous solution, Archives of Environmental Protection, 38, 1, pp. 3–25.
- [6]. Çiçek, F., Özer, D., Özer, A. & Özer, A. (2007). Low cost removal of reactive dyes using wheat bran, Journal of Hazardous Materials, 146, pp. 408–416.
- [7]. Ciobanu, G., Carja, G. & Ciobanu, O. (2008). Use of SAPO-5 zeolite-filled polyurethane membranes in wastewater treatment, Desalination, 222, 1–3, pp. 197–201.
- [8]. Ciobanu, G., Ignat, D., Carja, G. & Luca, C. (2009). Hydroxyapatite//polyurethane composite membranes for lead ions removal, Environmental Engineering and Management Journal, 8, 6, pp. 1347–1350.
- [9]. Ciobanu, G., Ilisei, S., Harja, M. & Luca, C. (2013). Removal of Reactive Blue 204 dye from aqueous solutions by adsorption onto nanohydroxyapatite, Science of Advanced Materials, 5, pp. 1090–1096.
- [10]. Ciobanu, G., Harja, M., Rusu, L., Mocanu, A.M. & Luca, C. (2014). Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent, Korean Journal of Chemical Engineering, 31, pp. 1021–1027.
- [11]. Dorozhkin, S.V. (2009). Calcium orthophosphates in nature, biology and medicine, Materials, 2, pp. 399–498.
- [12]. Dorozhkin, S.V. (2012). Dissolution mechanism of calcium apatites in acids: A review of literature, World Journal of Methodology, 2, pp. 1–17.
- [13]. Elliott, J.C. (1994). Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam 1994.
- [14]. Forgacs, E., Cserháti, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review, Environment International, 30, pp. 953–971.
- [15]. Freundlich, H.M.F. (1906). Uber die adsorption in Losungen, Zeitschrift fur Physikalische Chemie, 57, pp. 385–470.
- [16]. Gupta, V.K., Carrott, P.J.M., Ribeiro Carrott, M.M.L. & Suhas, P. (2009). Low-cost adsorbents: growing approach to wastewater treatment – a review, Critical Reviews in Environmental Science and Technology, 39, pp. 783–842.
- [17]. Hao, O.J., Kim, H. & Chang, P.C. (2000). Decolorization of wastewater, Critical Reviews in Environmental Science and Technology, 30, pp. 449–505.
- [18]. Harja, M., Barbuta, M., Rusu, L., Munteanu, C., Buema, G. & Doniga, E. (2011). Simultaneous removal of Astrazone blue and lead onto low cost sorbents based on power plant ash, Environmental Engineering and Management Journal, 10, pp. 341–347.
- [19]. Ho, Y.S. & McKay, G. (1998). Sorption of dye from aqueous solution by peat, Chemical Engineering Journal, 70, pp. 115–124.
- [20]. Khan, M.N. & Sarwar, A. (2007). Determination of points of zero charge of natural and treated adsorbents, Surface Review and Letters, 14, pp. 461–469.
- [21]. Kahraman, S., Kuru, F., Dogan, D. & Yesilada, O. (2012). Removal of Indigo Carmine from an aqueous solution by fungus Pleurotus ostreatus, Archives of Environmental Protection, 38, 3, pp. 51–57.
- [22]. Kaušpėdienė, D., Kazlauskienė, E., Česūnienė, R., Gefenienė, A., Ragauskas, R. & Selskienė, A. (2013). Removal of the phthalocyanine dye from acidic solutions using resins with the polystyrene divinylbenzene matrix, Chemija, 24, 3, pp. 171–181.
- [23]. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloester stoffe, Kungliga Svenska Vetenskapsakad, Handlingar, 24, pp. 1–39.
- [24]. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids, Journal of the American Chemical Society, 38, pp. 2221–2295.
- [25]. Lin, K., Pan, J., Chen, Y., Cheng, R. & Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, Journal of Hazardous Materials, 161, pp. 231–240.
- [26]. Madrakian, T., Afkhami, A. & Ahmadi, M. (2012). Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, pp. 102–109.
- [27]. Raynaud, S., Champion, E., Bernache-Assollant, D. & Laval, J.P. (2001). Determination of calcium/phosphorus atomic ratio of calcium phosphate apatites using X-ray Diffractometry, Journal of the American Ceramic Society, 84, pp. 355–366.
- [28]. Unuabonah, E.I., Adebowale, K.O. & Olu-Owolabi, B.I. (2007). Kinetic and thermodynamic studies of the adsorption of lead(II) ions onto phosphate-modified kaolinite clay, Journal of Hazardous Materials, 144, pp. 386–395.
- [29]. Webber, E.J. & Stickney, V.C. (1993). Hydrolysis kinetics of Reactive Blue 19-Vinyl Sulfone, Water Research, 27, pp. 63–67.
- [30]. Weber Jr., W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, 89, pp. 31–59.
- [31]. Weber, T.W. & Chakravorti, R.K. (1974). Pore and solid diffusion models for fixed bed adsorbers, Journal of American Institute of Chemical Engineers, 20, pp. 228–238.
- [32]. Xue, Y., Hou, H. & Zhu, S. (2009). Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study, Chemical Engineering Journal, 147, pp. 272–279.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ce60e1b-472e-43fd-ab98-ccdfc0cfc61d