Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes an evaluation method for the observable trap depth range of space charge when using the pulsed electro-acoustic (PEA) method and its complementarity with the current integration charge (Q(t)) method. Based on the measurement process of the PEA method and the hopping conduction principle of space charge, the relationship between the trap depth and the residence time of charge is analysed. A method to analyse the effect of the measurement speed and the spatial resolution of the PEA system on the observable trap depth is then proposed. Further results show when the single measurement time needs 1 s and the resolution is 10 μm at room temperature, the corresponding trap depth is larger than 0.68 eV. Meanwhile, under high temperature or with voltage applied, the depth can further increase. The combined measurement results of the PEA and Q(t) methods indicate that the former focuses on charge distribution in deep traps, which allows to calculate the distorted electric field. The latter can measure the changing process of the total charge involved in all traps, which is applicable to analysing the leakage current. Therefore, the evaluation of HVDC insulation properties based on the joint application of the two methods is more reliable.
Czasopismo
Rocznik
Tom
Strony
565--580
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., wzory
Twórcy
autor
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
autor
- Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo, 158-8557, Japan
autor
- Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo, 158-8557, Japan
autor
- North China Electric Power University, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
Bibliografia
- [1] Zhai, J., Li, W., Zha, J., Cheng, Q., Bian, X., & Dang, Z. (2020). Space charge suppression of polyethylene induced by blending with ethylene-butyl acrylate copolymer. CSEE Journal of Power and Energy Systems, 6(1), 152-159. https://doi.org/10.17775/CSEEJPES.2019.01150
- [2] Wang, G., & Kil, G. (Sep. 2017). Measurement and analysis of partial discharge using an ultra-high frequency sensor for gas-insulated structures. Metrology and Measurement Systems, 24(3), 515-524. https://doi.org/10.1515/mms-2017-0045
- [3] Ren, H., Takada, T., Uehara, H., Iwata, S., & Li, Q. (Feb. 2021). Research on charge accumulation characteristics by PEA Method and Q(t) method. IEEE Transactions on Instrumentation and Measurement, 70, 6004209. https://doi.org/10.1109/TIM.2021.3055288
- [4] Dong, L., Gan, J., Zhang, P., Zhao, Z., Cheng, B., & Han, D. (2018). An improved resonant thermal converter based on micro-bridge resonator. Metrology and Measurement Systems, 25(4), 715-725. https://doi.org/10.24425/mms.2018.124882
- [5] Kuparowitz, M., Sedlakova, V., & Grmela, L. (2017). Leakage current degradation due to ion drift and diffusion in tantalum and niobium oxide capacitors. Metrology and Measurement Systems, 24(2), 255-264. https://doi.org/10.1515/mms-2017-0034
- [6] Takada, T., Maeno, T., & Kushibe, H. (1987). An electric stress-pulse technique for the measurement of charge in a plastic plate irradiated by an electron beam. IEEE Transactions on Electrical Insulation, EI-22(4), 497-502. https://doi.org/10.1109/TEI.1987.298914
- [7] Gao, C., Qi, B., Gao, Y., Zhu, Z., & Li, C. (2019). Kerr electro-optic sensor for electric field in large-scale oil-pressboard insulation structure. IEEE Transactions on Instrumentation and Measurement, 68(10), 3626-3634. https://doi.org/10.1109/TIM.2018.2881803
- [8] Chen, G., Chong, Y., & Fu, M. (2006). Calibration of the pulsed electroacoustic technique in the presence of trapped charge. Measurement Science and Technology, 17(7), 1974-1980. https://doi.org/10.1088/0957-0233/17/7/041
- [9] Zhou, Y., Dai, C., & Huang, M. (2016). Space charge characteristics of oil-paper insulation in the electro-thermal aging process. CSEE Journal of Power and Energy Systems, 2(2), 40-46. https://doi.org/10.17775/CSEEJPES.2016.00020
- [10] Wu, J., Huang, R., Wan, J., Chen, Y., & Yin, Y. (2016). Phase identification for space charge measurement under periodic stress of an arbitrary waveform based on the Hilbert transform. Measurement Science and Technology, 27(4), 045004. https://doi.org/10.1088/0957-0233/27/4/045004
- [11] Ghorbani, H., Abbasi, A., Jeroense, M., Gustafsson, A., & Saltzer, M. (2017). Electrical characterization of extruded DC cable insulation - the challenge of scaling. IEEE Transactions on Dielectrical and Electrical Insulation, 24(3), 1465-1475. https://doi.org/10.1109/TDEI.2017.006124
- [12] Mazzanti, G., Chen, G., Fothergill, J. C., Hozumi, N., Li, J., Marzinotto, M., Mauseth, F., Morshuis, P., Reed, C., & Tzimas, A. (2015). A protocol for space charge measurements in full-size HVDC extruded cables. IEEE Transactions on Dielectrical and Electrical Insulation, 22(1), 21-34. https://doi.org/10.1109/TDEI.2014.004557
- [13] Escurra, M. G., Mor, R. A., & Vaessen, P. (2020). Influence of the pulsed voltage connection on the electromagnetic distortion in full-size HVDC cable PEA measurements. Sensors, 20(11), 3087. https://doi.org/10.3390/s20113087
- [14] Imburgia, A., Romano, P., Chen, G., Rizzo, G., Sanseverino, R. E., Viola, F., & Ala, G. (2019). The industrial applicability of PEA space charge measurements for performance optimization of HVDC power cables. Energies, 12(21), 4186. https://doi.org/10.3390/en12214186
- [15] Rizzo, G., Romano, P., Imburgia, A., & Ala, G. (2019). Review of the PEA method for space chargé measurements on HVDC cables and mini-cables. Energies, 12(18), 3512. https://doi.org/10.3390/en12183512
- [16] Jung, H., Kim, H., Choi, T., Hwangbo, S. (2019). Automatic measurement system of the space chargé distribution by a two-step deconvolution. Journal of Electrical Engineering and Technology, 14(5), 2049-2055. https://doi.org/10.1007/s42835-019-00169-y
- [17] International Electrotechnical Commission. (2021). Calibration of space charge measuring equipment based on the pulsed electro-acoustic (PEA) measurement principle (Technical Specification No. IEC/TS 62758:2012). https://webstore.iec.ch/publication/7418
- [18] Zhu, Y., Li, S., Min, D., Li, S., Cui, H., & Chen, G. (2018). Space charge modulated electrical breakdown of oil impregnated paper insulation subjected to AC-DC combined voltages. Energies, 11, 1547. https://doi.org/10.3390/en11061547
- [19] Tian, F., & Hou, C. (2018). A trap regulated space charge suppression model for LDPE based nanocomposites by simulation and experiment. IEEE Transactions on Electrical Insulation, 25(6), 2169-2177. https://doi.org/10.1109/TDEI.2018.007282
- [20] Li, J., Liang, H., Xiao, M., Du, B., & Takada, T. (2019). Mechanism of deep trap sites in epoxy/Graphene nanocomposite using quantum chemical calculation. IEEE Transactions on Electrical Insulation, 26(5), 1577-1580. https://doi.org/10.1109/TDEI.2019.008178
- [21] Li, J., Zhao, R., Du, B., Su, J., Han, C., & Takada, T. (2020). Application progress of quantum chemical calculation in the field of HVDC insulation. High Voltage Engineering, 46(3), 722-781. https://doi.org/10.13336/j.1003-6520.hve.20200331003
- [22] Takada, T., Sakai, T., & Toriyama, Y. (1972). Estimation method of charge distribution in polymeric films. IEEJ Transactions on Fundamental Materials, 92(12), 537-544. https://doi.org/10.1541/ieejfms1972.92.537
- [23] Hanazawa, D., Sonoda, K., Miyake, H., Tanaka, Y., & Takada, T. (2018). Development of measurement system for DC integrated charge at high temperature. 2018 Condition Monitoring and Diagnosis (2018), Australia. https://doi.org/10.1109/CMD.2018.8535946
- [24] Takada, T., Tohmine, T., Tanaka, Y., & Li, J. (2019). Space charge accumulation in double-layer dielectric systems-measurement methods and quantum chemical calculations. IEEE Electrical Insulation Magazine, 35(3), 36-46. https://doi.org/10.1109/MEI.2019.8804333
- [25] Sekiguchi, Y., Hosomizu, K., & Yamazaki, T. (2020). Conduction phenomena of AC- and DC-XLPE analyzed by Q(t) method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 166-168. https://ieeexplore.ieee.org/document/9275786
- [26] Wang, W., Sonoda, K., Yoshida, S., Takada, T., Tanaka, Y., & Kurihara, T. (2018). Current integrated technique for insulation diagnosis of water-tree degraded cable. IEEE Transactions on Dielectrical and Electrical Insulation, 25(1), 94-101. https://doi.org/10.1109/TDEI.2018.006738
- [27] Fuji, M., Matsushita, K., Fukuma, M., & Mitsumoto, S. (2020). Study on characteristics of electrical tree in epoxy resin measured by current integrated charge method. 2020 International Symposium on Electrical Insulating Materials (ISEIM), Japan, 305-308. https://ieeexplore.ieee.org/document/9275799
- [28] Fan, L., Tu, Y., Chen, B., Yi, C., Qin, S., Wang, S. (2020). Space charge behavior of polyimide at cryogenic temperatures. IEEE Transactions on Dielectrical and Electrical Insulation, 27(3), 891-899. https://doi.org/10.1109/TDEI.2020.008704
- [29] Li, J., Wang, Y., Ran, Z., Yao, H., Du, B., & Takada, T. (2020). Molecular structure modulated trap distribution and carrier migration in fluorinated epoxy resin. Molecules, 25(3), 3071. https://doi.org/10.3390/molecules25133071
Uwagi
1.This project was supported by the Beijing Natural Science Foundation (3202031) and the National Natural Science Foundation of China (Grant No. 51929701, 51737005, 52081330507).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cd8279b-6e10-4b0d-8fde-1354082d35b1