PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Lithuanian national standard of electric resistance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lithuanian national standard of electric resistance is maintained as the basis for calibration and measurement capabilities published in the key comparison database of the International Bureau of Weights and Measures (BIPM). The stability and uncertainty of the resistance value measurements, performed since 2004 using the calibrated values of the standard resistors to predict their future behaviour as well as influence of environmental conditions, are discussed. Also discussed is the recovery of a standard resistor which had undergone a mechanical disturbance. It is concluded that the standard resistors operated by the Lithuanian National Electrical Standards Laboratory feature stable drift of resistance, which is well predicted by means of linear regression.
Rocznik
Strony
615--624
Opis fizyczny
Bibliogr. 16 poz., rys., wykr., wzory
Twórcy
  • Center for Physical Sciences and Technology (FTMC), Metrology Department, Saulètekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Metrology Department, Saulètekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Center for Physical Sciences and Technology (FTMC), Metrology Department, Saulètekio Ave. 3, LT-10257 Vilnius, Lithuania
autor
  • Center for Physical Sciences and Technology (FTMC), Metrology Department, Saulètekio Ave. 3, LT-10257 Vilnius, Lithuania
Bibliografia
  • [1] Jevtic, N., & Drndarevic, V. (2013). Design and implementation of plug-and-play analog resistance temperature sensor. Metrology and Measurement Systems, 20(3), 565-580. https://doi.org/10.2478/mms-2013-0048
  • [2] Czaja, Z. (2016). An implementation of a compact smart resistive sensor based on a microcontroller with an internal ADC. Metrology and Measurement Systems, 23(2), 225-238. https://doi.org/10.1515/mms-2016-0020
  • [3] Kwiatkowski, A., Chludziński, T., & Smulko, J. (2018). Portable exhaled breath analyzer employing fluctuation-enhanced gas sensing method in resistive gas sensors. Metrology and Measurement Systems, 25(2), 551-560. https://doi.org/10.24425/123892
  • [4] Chludziński, T., & Kwiatkowski, A. (2020). Exhaled breath analysis by resistive gas sensors. Metrology and Measurement Systems, 27(1), 81-89. https://doi.org/10.24425/mms.2020.131718
  • [5] Kaneko, N.H., Oe, T., Domae, A., Abe, T., Kumagai, M., & Zama, M. (2012). Development of high-stability metal-foil standard resistors for DC and AC measurements. NCSLI Measure, 7(3), 34-40. https://doi.org/10.1080/19315775.2012.11721618
  • [6] Oe, T., Urano, Ch., Hadano, M., Ozawa, A., Takenaka, K., & Kaneko, N. (2013). Optimization of Mn3Ag1-xCuxN Antiperovskite Compound Fabrication for Resistance Standard. IEEE Transactions on Instrumentation and Measurement, 62(5), 1450-1453. https://doi.org/10.1109/TIM.2012.2230794
  • [7] Domae, A., Oe, T., Kumagai, M., Zama, M., & Kaneko, N. (2013). Characterization of 100-Ω Metal Foil Standard Resistors. IEEE Transactions on Instrumentation and Measurement, 62(5), 1776-1782. https://doi.org/10.1109/TIM.2013.2253973
  • [8] Domae, A., Abe, T., Kumagai, M., Zama, M., Oe, T., & Kaneko, N. H. (2015). Development and Evaluation of High-Stability Metal-Foil Resistor with a Resistance of 1 kΩ. IEEE Transactions on Instrumentation and Measurement, 64(5), 1490-1495. https://doi.org/10.1109/TIM.2015.2398955
  • [9] Kaneko, N.H., Oe, T., Abe, T., Kumagai, M., & Zama, M. (2016). Development of 1 Ω and 10 Ω Metal Foil Standard Resistors. 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), Canada. https://doi.org/10.1109/CPEM.2016.7540785
  • [10] Abe, T., Oe, T., Kumagai, M., Zama, M., & Kaneko, N.H. (2019). Characterization of 1 kΩ Metal-Foil Standard Resistors and Continuing Drift-Rate Evaluation of 1 Ω and 10 Ω Standard Resistors. IEEE Transactions on Instrumentation and Measurement, 68(5), 2078-2083. https://doi.org/10.1109/TIM.2018.2879997
  • [11] Mleczko, K., Ptak, P., Zawiślak, Z., Słoma, M., Jakubowska, M., & Kolek, A. (2017). Noise Properties of Graphene-Polymer Thick-Film Resistors. Metrology and Measurement Systems, 24(3), 589-594. https://doi.org/10.1515/mms-2017-0051
  • [12] Jones, G.R., Pritchard, B.J., & Elmquist, R. E. (2009). Characteristics of precision 1 Ω standard resistors influencing transport behaviour and the uncertainty of key comparisons. Metrologia, 46(4), 503-511. https://doi.org/10.1088/0026-1394/46/5/015
  • [13] Key comparison database of the BIPM. Calibration and Measurement Capabilities. Electricity and magnetism, Lithuania. https://www.bipm.org/
  • [14] Draper, N.R., & Smith, H. (1998). Applied regression analysis (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781118625590
  • [15] Jeckelmann, B., & Zeier, M. (2010). Final report on RMO key comparison EUROMET.EM-K2: Comparison of resistance standards at 10 MΩ and 1 GΩ. Metrologia, 47. https://doi.org/10.1088/0026-1394/47/1A/01006
  • [16] Schumacher, B. (2010). EUROMET.EM-K10 Key Comparison of Resistance Standards at 100 Ω. Final Report. Metrologia, 47. https://doi.org/10.1088/0026-1394/47/1A/01008
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cd33d88-1422-47aa-aba7-ba49f898de4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.