Identyfikatory
Warianty tytułu
Impact of enantiomeric amino acid substitution in proline-rich salivary peptides on coordination and biological activity
Języki publikacji
Abstrakty
Saliva represents a highly complex biological environment containing numerous protein and peptides. These factors are responsible for maintaining oral homeostasis and providing protection against microorganisms. The human oral cavity harbors a remarkably diverse microbiome, comprising more than 700 bacterial species as well as numerous viruses and fungi. The microbiological balance of the oral microbiome, essential for maintaining host health, is tightly regulated by proteins, antimicrobial peptides (AMPs), and other bioactive components of saliva. Disruption of this balance can lead to dysbiosis, contributing to the onset of oral and systemic diseases. Antimicrobial peptides are defined as short amino acid sequences that constitute an essential component of innate immunity, capable of directly targeting bacteria, viruses, fungi, and protozoa. In saliva, examples include histatins, defensins, cystatins, and protein fragments, which act as the first line of defense against pathogens through mechanisms such as disruption of microbial membrane integrity, modulation of immune responses, and metal ion chelation. Divalent metal ions, such as Cu(II) and Zn(II), play a particularly important role by contributing to an increased net positive charge, participating in the formation of defined secondary structures in complexes with AMPs, modulating their antimicrobial activity, and shaping a microenvironment that restricts microbial growth. Given the growing threat of antibiotic resistance, salivary antimicrobial peptides represent a promising therapeutic alternative. In recent years, increasing attention has been directed towards structural modifications of these molecules, such as enantiomeric substitution (L → D). It enhances their resistance to enzymatic degradation, prolongs biological activity, and strengthens antimicrobial properties while maintaining the ability to coordinate metal ions. The aim of this review is to highlight the role of salivary antimicrobial peptides in maintaining oral microbial balance, to discuss their mechanisms of action, and to present potential therapeutic opportunities arising from their natural properties and structural modifications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
977--1010
Opis fizyczny
Bibliogr. 104 poz., rys., tab., wykr.
Twórcy
autor
- Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
autor
- Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
- [1] A. Bahar, D. Ren, Pharmaceuticals, 2013, 6, 1543.
- [2] C.J.L. Murray, et al., The Lancet, 2022, 399, 629.
- [3] R. Gaynes, Emerg Infect Dis, 2017, 23, 849.
- [4] B. Plackett, Nature, 2020, 586, S50.
- [5] B. Aslam, et al., Infect Drug Resist, 2018, 11, 1645.
- [6] A.W. Lloyd, Drug Discov Today, 1999, 4, 39.
- [7] Y.-T. Tan, D.J. Tillett, I.A. McKay, Mol Med Today, 2000, 6, 309.
- [8] A.S. Sultan, et al., PLoS Pathog, 2018, 14, e1006719.
- [9] W.M. Edgar, Br Dent J, 1992, 172, 305.
- [10] A.N. Amerongen, E. Veerman, Oral Dis, 2002, 8, 12.
- [11] S.P. Humphrey, R.T. Williamson, J Prosthet Dent, 2001, 85, 162.
- [12] C. Dawes et al., Arch Oral Biol, 2015, 60, 863.
- [13] H.Y. Sroussi et al., Cancer Med, 2017, 6, 2918.
- [14] T. Vila, et al., PLoS Pathog, 2019, 15, e1008058.
- [15] A.M. Lynge Pedersen, D. Belstrøm, J Dent, 2019, 80, S3.
- [16] N. Grassl, et al., Genome Med, 2016, 8, 44.
- [17] T.K. Fábián, et al., Int J Mol Sci, 2012, 13.
- [18] J. Feng, et al., Nat Commun, 2024, 15, 6040.
- [19] R. Asad, et al., Cureus, 2024, 11, e73758.
- [20] G. Laputková, et al., Open Life Sci, 2018, 13, 174.
- [21] S.S. Perdue, J.H. Humphrey, Encyclopædia Britannica, Inc. , 2023.
- [22] S.A. Patel, J.A. Barros, Advances in Salivary Diagnostics, Springer Berlin Heidelberg, 2015, 1. [23] T. Soukka, J. Tenovuo, J. Rundegren, Arch Oral Biol, 1993, 38, 227.
- [24] A.M. Krupińska, Z. Bogucki, J Oral Biosci, 2021, 63, 129.
- [25] F. Berlutti, et al., Ann Stomatol (Roma), 2011, 2, 10.
- [26] S.K. Linden, et al., Mucosal Immunol, 2008, 1, 183.
- [27] R.B. Brown, M.A. Hollingsworth, in Encyclopedia of Biological Chemistry, Elsevier, 2013, 200.
- [28] J.-L. Desseyn, et al., J Biol Chem, 1997, 272, 16873.
- [29] E.S. Frenkel, K. Ribbeck, J Oral Microbiol, 2015, 7, 29759.
- [30] J.A. Voynow, B.M. Fischer, in Encyclopedia of Respiratory Medicine, Elsevier, 2006, 56.
- [31] C.M. Deber, B. Brodsky, A. Rath, in Encyclopedia of Life Sciences, Wiley, 2010. 1008 A.
- [32] B. Manconi, et al., J Proteomics, 2016, 134, 47.
- [33] G.M. Zakhary, et al., J Dent Res, 2007, 86, 1176.
- [34] Z. Khurshid, et al., Saudi Pharmaceutical Journal, 2016, 24, 515.
- [35] G. Diamond, et al., Curr Pharm Des, 2009, 15, 2377.
- [36] D. Heimlich, A. Harrison, K. Mason, Antibiotics, 2014, 3, 645.
- [37] K. Ouhara, et al., J Antimicrob Chemother, 2005, 55, 888.
- [38] K. R. Gagandeep, R. Balenahalli Narasingappa, G. Vishnu Vyas, Heliyon, 2024, 10, e38079. [39] H. Zhang, et al., Molecules, 2025, 30, 1529.
- [40] J. Li, et al., Front Neurosci, 2017, 11.
- [41] T.G. McCaslin, et al., Sci Rep, 2019, 9, 17303.
- [42] S. Melino, et al., FEBS J, 2014, 281, 657.
- [43] F.G. Oppenheim, et al., J Biol Chem, 1988, 263, 7472.
- [44] H. Gusman, et al., (BBA) - Protein Struct and Mol Enz, 2001, 1545, 86.
- [45] E. Dzień, J et al., Dalton Trans., 2024, 53, 19202.
- [46] J.X. Campbell, et al., ACS Infect Dis, 2022, 8, 1920.
- [47] E. Dzień, et al., Dalton Trans, 2024, 53, 7561.
- [48] S.H. White, W.C. Wimley, M.E. Selsted, Curr Opin Struct Biol, 1995, 5, 521.
- [49] T.-T. Wang, et al., J Immun, 2004, 173, 2909.
- [50] G. Wang, Pharmaceuticals, 2014, 7, 545.
- [51] H. Sharma, R. Nagaraj, in Nat Prod Chem, 2015, 46, 69.
- [52] M. Amerikova, et al., Biotech & Bio Eq, 2019, 33, 671.
- [53] A. Dunsche, et al., J Oral Pathology & Medicine, 2001, 30, 154.
- [54] S. Krisanaprakornkit, et al., Infect Immun, 1998, 66, 4222.
- [55] J. Fu, et al., Signal Transduct Target Ther, 2023, 8, 300.
- [56] M. Nagib, et al., Prob Antimicrob Prot, 2025, 17, 1563.
- [57] N. Maddu, Saliva and Salivary Diag, IntechOpen, 2019.
- [58] F. Romano, et al., Biomed, 2020, 8, 354.
- [59] P. Garhammer, et al., Clin Oral Investig, 2004, 8, 238.
- [60] H.L. Norris, et al., J Oral Microbiol, 2018, 10, 1447216.
- [61] J. Wątły, S. Potocki, M. Rowińska‐Żyrek, Chem Europ J, 2016, 22, 15992.
- [62] C.C. Staats, et al., Front Cell Infect Microbiol, 2013, 3.
- [63] P. Walencik, J. Watly, M. Rowinska-Zyrek, Curr Med Chem, 2016, 23, 3717.
- [64] H. Kozlowski, et al., Curr Med Chem, 2014, 21, 3721.
- [65] K.W. Becker, E.P. Skaar, FEMS Microbiol Rev, 2014, 38, 1235.
- [66] G.-X. Wei, J Antimicrob Chemother, 2006, 57, 1100.
- [67] Y. Huan, et al., Front Microbiol, 2020, 11.
- [68] Ballester, Milara, Cortijo, J Clin Med, 2019, 8, 1447.
- [69] M. Kesimer, et al., BMC Microbiol, 2009, 9, 163.
- [70] H.B.G. Robinson, J Dent Res, 1953, 32, 628.
- [71] C. Cillóniz, et al., Antimicrobial Resistance in the 21st Century, Springer International Publishing, 2018, 13.
- [72] P. Gjermo, K. Lyche Baastad, G. Rölla, J Periodontal Res, 1970, 5, 102.
- [73] H.E. Schroeder, D. Shanley, J Periodontology -Periodontics, 1969, 40, 643.
- [74] H. Situ, L.A. Bobek, Antimicrob Agents Chemother, 2000, 44, 1485.
- [75] L.A. Bobek, H. Situ, Antimicrob Agents Chemother, 2003, 47, 643.
- [76] T.L. Gururaja, et al., (BBA) - Protein Struct and Mol Enz, 1999, 1431, 107.
- [77] http://www.atcc.org,
- [78] J. Gawłowski, et al., Dalton Trans, 2025, 35, 13257.
- [79] G.-X. Wei, A.N. Campagna, L.A. Bobek, Ann Clin Microbiol Antimicrob, 2007, 6, 14.
- [80] K. Szarszoń, et al., Inorg Chem, 2024, 63, 11616.
- [81] J. Wątły, et al., Dalton Trans, 2025, 54, 12189.
- [82] J. Wątły, et al., Inorg Chem, 2025, 64, 6365.
- [83] A. Krynicka, et al., Eur J Inorg Chem, 2025, 29, e202500263.
- [84] S.-U. Gorr, Front Oral Biol., 2012, 15, 84.
- [85] E.J. Helmerhorst, F.G. Oppenheim, J Dent Res, 2007, 86, 680.
- [86] K. Thomadaki, et al., J Dent Res, 2011, 90, 1325.
- [87] Anna Ślusarczyk, Wpływ enancjomerycznej wymiany aminokwasów na stabilność enzymatyczną oraz właściwości strukturalne i termodynamiczne kompleksów jonów Zn(II) oraz Cu(II) z fragmentem mucyny MG2 FPNPHQPPKHPDK, praca magisterska, 2024.
- [88] Y. Feng et al., Int J Oral Sci, 2019, 11, 7.
- [89] P.O. Soder, T. Modfier, Acta Odontol Scand, 1977, 25, 41.
- [90] B. Zhu, et al., Future Microbiol, 2018, 13, 915.
- [91] H.T. Pramesti, Padjadjaran Journal of Dentistry, 2016, 28, 45.
- [92] C.C. Murdoch, E.P. Skaar, Nat Rev Microbiol, 2022, 20, 657.
- [93] F. Azmi, M. Skwarczynski, I. Toth, Curr Med Chem, 2016, 23, 4610.
- [94] J. Wątły, et al., J Inorg Biochem, 2021, 217, 111386.
- [95] J. Talapko, et al., Antibiotics, 2022, 11, 1417.
- [96] Y. Jiang, et al., Adv Drug Deliv Rev, 2021, 170, 261.
- [97] K. Sharma, et al., Drug Discov Today, 2023, 28, 103464.
- [98] R. Tugyi, et al., PNAS, 2005, 102, 413.
- [99] T. Sarkar, et al., ACS Infect Dis, 2024, 10, 562.
- [100] J. Lu, et al., Front Microbiol, 2020, 11.
- [101] N. Doti, et al., Int J Mol Sci, 2021, 22, 8677.
- [102] H. Yumoto, et al., Int J Mol Sci, 2019, 20, 4571.
- [103] K. Bakshi, et al., Meth Mol Bio, 2014, 1088, 247.
- [104] A. Rodger, Encyclopedia of Biophysics, Springer Berlin Heidelberg, 2013, 726.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cd2d66d-2a21-4a3c-9c7e-db5732021c73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.