PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Thermal Decomposition Temperature of High-Energy Heterocyclic Aromatic Compounds in Order to Increase Their Safety during Storage, Handling and Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heterocyclic aromatic compounds containing various derivatives of five or six-membered nitrogen-containing rings, viz. triazoles, tetrazoles, furazans, triazines, and tetrazines, and some of their salts have been studied. High nitrogen content and a large positive heat of formation are two important properties of these compounds. Two new models are introduced for the reliable prediction of the thermal stability of these compounds through the thermal decomposition temperature (onset). The reported data for 181 compounds have been used to derive and test the new models. For a training set containing 132 heterocyclic aromatic compounds, the values of the average absolute deviation (AAD) and the coefficient of determination (R2) of the improved correlation were 9.72 K and 0.959, respectively. For triazoles, tetrazoles, furazans, triazines, and tetrazines, the predicted results of ADD and R2 for the external test data set for this model containing 41 compounds were 23.03 K and 0.664, respectively, which are closer to experimental data than those obtained by the core correlation, i.e. 26.49 K and 0.653, respectively. The correlation coefficients of cross-validation for leave-one-out (Q2LOO) and 5-fold (Q25CV) of the improved correlation were 0.955 and 0.951, respectively, which confirm that it is not an over-fitted model, robust and well-behaved.
Rocznik
Strony
39--62
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Faculty of Applied Sciences, Malek-Ashtar University of Technology, Iran
  • Faculty of Applied Sciences, Malek-Ashtar University of Technology, Iran
  • Faculty of Applied Sciences, Malek-Ashtar University of Technology, Iran
Bibliografia
  • [1] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010; ISBN: 978-3-527-32610-5.
  • [2] Keshavarz, M.H.; Klapötke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties. Walter de Gruyter GmbH, Berlin/Boston, 2017.
  • [3] Keshavarz, M.H.; Klapötke, T.M. Energetic Compounds: Methods for Prediction of Their Performance. 2nd ed., Walter de Gruyter GmbH, Berlin/Boston, 2020; ISBN 978-3-11-067764-5.
  • [4] Klapötke, T.M. Energetic Materials Encyclopedia. 2nd ed., Walter de Gruyter GmbH, Berlin/Boston, 2021; ISBN 978-3-11-067245-9.
  • [5] Klapötke, T.M. Chemistry of High-Energy Materials. 5th ed., Walter de Gruyter GmbH, Berlin/Boston, 2019; ISBN 978-3-11-062438-0.
  • [6] Farhadian, A.H.; Tehrani, M.K.; Keshavarz, M.H.; Karimi, M.; Darbani, S.M.R.; Rezayi, A.H. A Novel Approach for Investigation of Chemical Aging in Composite Propellants Through Laser-Induced Breakdown Spectroscopy (LIBS). J. Therm. Anal. Calorim. 2016, 124(1): 279-286.
  • [7] Keshavarz, M.H.; Karimi, M.; Goodarzi, E.; Hosseini, S.H. The Use of the Change of Elongation for Comparison of the Shelf Life of Composite Solid Propellants in the Air and Nitrogen Atmospheres. Z. Anorg. Allg. Chem. 2021, 647(7): 696-703.
  • [8] Ahmadi, S.H.; Keshavarz, M.H.; Atabak, H.R.H. Correlations between Laser Induced Breakdown Spectroscopy (LIBS) and Dynamical Mechanical Analysis (DMA) for Assessment of Aging Effect on Plastic Bonded Explosives (PBX). Z. Anorg. Allg. Chem. 2019, 645(2): 120-125.
  • [9] Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. A Novel Method for Risk Assessment of Electrostatic Sensitivity of Nitroaromatics Through Their Activation Energies of Thermal Decomposition. J. Therm. Anal. Calorim. 2014, 115(1): 93-100.
  • [10] Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. A Link between Impact Sensitivity of Energetic Compounds and Their Activation Energies of Thermal Decomposition. J. Therm. Anal. Calorim. 2014, 117(1): 423-432.
  • [11] Keshavarz, M.H.; Mousaviazar, A.; Hayaty, M. A Novel Approach for Assessment of Thermal Stability of Organic Azides through Prediction of Their Temperature of Maximum Mass Loss. J. Therm. Anal. Calorim. 2017, 129(3): 1659-1665.
  • [12] Fathollahi, M.; Sajady, H. QSPR Modeling of Decomposition Temperature of Energetic Cocrystals Using Artificial Neural Network. J. Therm. Anal. Calorim. 2018, 133(3): 1663-1672.
  • [13] Prana, V.; Rotureau, P.; André, D.; Fayet, G.; Adamo, C. Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides. Mol. Inf. 2017, 36(10) paper 1700024: 1-8.
  • [14] Mathieu, D.; Alaime, T.; Beaufrez, J. From Theoretical Energy Barriers to Decomposition Temperatures of Organic Peroxides. J. Therm. Anal. Calorim. 2017, 129(1): 323-337.
  • [15] Wang, B.; Yi, H.; Xu, K.; Wang, Q. Prediction of the Self-Accelerating Decomposition Temperature of Organic Peroxides Using QSPR Models. J. Therm. Anal. Calorim. 2017, 128(1): 399-406.
  • [16] Zohari, N.; Keshavarz, M.H.; Dalaei, Z. Prediction of Decomposition Onset Temperature and Heat of Decomposition of Organic Peroxides Using Simple Approaches. J. Therm. Anal. Calorim. 2016, 125(2): 887-896.
  • [17] Ghani, K.; Keshavarz, M.H.; Jafari, M.; Khademian, F. A Novel Method for Predicting Decomposition Onset Temperature of Cubic Polyhedral Oligomeric Silsesquioxane Derivatives. J. Therm. Anal. Calorim. 2018, 132(1): 761-770.
  • [18] Zohari, N.; Abrishami, F.; Zeynali, V. Prediction of Decomposition Temperature of Azole-based Energetic Compounds in Order to Assess of Their Thermal Stability. J. Therm. Anal. Calorim. 2020, 141: 1453-1463.
  • [19] Keshavarz, M.H.; Pouretedal, H.R.; Saberi, E. A New Method for Predicting Decomposition Temperature of Imidazolium‐based Energetic Ionic Liquids. Z. Anorg. Allg. Chem. 2017, 643(2): 171-179.
  • [20] Rajaei, A.; Jafari, M.; Ghani, K. A Novel Method for Predicting Decomposition Onset Temperature of High-Energy Metal-Organic Frameworks. J. Therm. Anal. Calorim. 2020, 142: 1295-1302.
  • [21] Keshavarz, M.H. Combustible Organic Materials. Determination and Prediction of Combustion Properties. Walter de Gruyter GmbH, Berlin/Boston, 2018; ISBN 978-3-11-057220-9.
  • [22] Badgujar, D.; Talawar, M.; Zarko, V.E.; Mahulikar, P.P. Recent Advances in Safe Synthesis of Energetic Materials: An Overview. Combust. Explos. Shock Waves 2019, 55(3): 245-257.
  • [23] Keshavarz, M.H.; Jafari, M.; Ebadpour, R. Recent Advances for Assessment of the Condensed Phase Heat of Formation of High-Energy Content Organic Compounds and Ionic Liquids (or Salts) to Introduce a New Computer Code for Design of Desirable Compounds. Fluid Phase Equilib. 2021, 533: 112913.
  • [24] Manafi Moghadam, M.; Zamani, M. Performance of NO2‐rich Multifunctionalized C60 Derivatives as New High‐Energy‐Density Nanomaterials. Int. J. Quantum Chem. 2021, 121(5) paper e26504.
  • [25] NIST Chemistry WebBook. National Institute of Standards and Technology, 2021, http://webbook.nist.gov.
  • [26] Mathieu, D. Sensitivity of Energetic Materials: Theoretical Relationships to Detonation Performance and Molecular Structure. Ind. Eng. Chem. Res. 2017, 56(29): 8191-8201.
  • [27] Keshavarz, M.H.; Abadi, Y.H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. A Novel Class of Nitrogen‐rich Explosives Containing High Oxygen Balance to Use as High Performance Oxidizers in Solid Propellants. Propellants Explos. Pyrotech. 2017, 42(10): 1155-1160.
  • [28] Tang, J.; Cheng, G.; Feng, S.; Zhao, X.; Zhang, Z.; Ju, X.; Yang, H. Boosting Performance and Safety of Energetic Materials by Polymorphic Transition. Cryst. Growth Des. 2019, 19(8): 4822-4828.
  • [29] Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. A Review on Catalytic Synthesis of Energy Rich Fuel Additive Levulinate Compounds from Biomass Derived Levulinic Acid. Fuel Process. Technol. 2020, 197 paper 106213: 1-19.
  • [30] Zhang, W.; Zhang, J.; Deng, M.; Qi, X.; Nie, F.; Zhang, Q. A Promising High-Energy-Density Material. Nat. Commun. 2017, 8(1): 181-188.
  • [31] Singh, A.; Sharma, T.C.; Kumar, M.; Narang, J.K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Def. Technol. 2017, 13(1): 22-32.
  • [32] Keshavarz, M.H.; Moradi, S.; Saatluo, B.E.; Rahimi, H.; Madram, A.R. A Simple Accurate Model for Prediction of Deflagration Temperature of Energetic Compounds. J. Therm. Anal. Calorim. 2013, 112(3): 1453-1463.
  • [33] Keshavarz, M.H.; Abadi, Y.H.; Esmaeilpour, K.; Damiri, S.; Oftadeh, M. Novel High-Nitrogen Content Energetic Compounds with High Detonation and Combustion Performance for Use in Plastic Bonded Explosives (PBXs) and Composite Solid Propellants. Cent. Eur. J. Energ. Mater. 2018, 15(2): 364-375.
  • [34] Gutowski, Ł.; Cudziło, S. Synthesis and Properties of Novel Nitro-based Thermally Stable Energetic Compounds. Def. Technol. 2020, 17(3): 775-784.
  • [35] Oliveira, M.A.S.; Oliveira, R.S.S.; Borges, I. Quantifying Bond Strengths via a Coulombic Force Model: Application to the Impact Sensitivity of Nitrobenzene, Nitrogen-rich Nitroazole, and non-Aromatic Nitramine Molecules. J. Mol. Model. 2021, 27(3): 1-17.
  • [36] Jiao, F.; Xiong, Y.; Li, H.; Zhang, C. Alleviating the Energy & Safety Contradiction to Construct New Low Sensitivity and Highly Energetic Materials through Crystal Engineering. CrystEngComm 2018, 20(13): 1757-1768.
  • [37] Bu, R.; Xiong, Y.; Zhang, C. π–π Stacking Contributing to the Low or Reduced Impact Sensitivity of Energetic Materials. Cryst. Growth Des. 2020, 20(5): 2824-2841.
  • [38] Liu, W.-H.; Zeng, W.; Qin, H.; Jiang, C.-L.; Liu, F.-S.; Tang, B.; Lei, Y.-X.; Liu, Q.-J. First-principle Calculations of Electronic, Vibrational, and Thermodynamic Properties of 1,3-Diamino-2,4,6-trinitrobenzene. J. Mol. Model. 2019, 25(12): 1-14.
  • [39] Yin, P.; Zhang, Q.; Shreeve, J.M. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials. Acc. Chem. Res. 2016, 49(1): 4-16.
  • [40] He, P.; Pan, Y.; Jiang, J.-C. Prediction of the Self-Accelerating Decomposition Temperature of Organic Peroxides Based on Support Vector Machine. Procedia Eng. 2018, 211: 215-225.
  • [41] Keshavarz, M.H.; Maghsoodi, N.K.; Shokrollahi, A. A Reliable Model for Assessment of Melting Points of Cyclic Hydrocarbons Containing Complex Molecular Structures, Isomers and Stereoisomers. Fluid Phase Equilib. 2020, 521: 112692.
  • [42] Keshavarz, M.H.; Zakinejad, S.; Esmailpour, K. An Improved Simple Method for Prediction of Entropy of Fusion of Energetic Compounds. Fluid Phase Equilib. 2013, 340: 52-62.
  • [43] He, C.; Yin, P.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Energetic Aminated-Azole Assemblies from Intramolecular and Intermolecular N–H…O and N–H…N Hydrogen Bonds. Chem. Commun. 2016, 52: 8123-8126.
  • [44] He, C.; Zhang, J.; Parrish, D.A.; Shreeve, J.M. 4-Chloro-3,5-dinitropyrazole: A Precursor for Promising Insensitive Energetic Compounds. J. Mater. Chem. A 2013, 1(8): 2863-2868.
  • [45] Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126(5): 1763-1768.
  • [46] Keshavarz, M.H.; Klapötke, T.M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants Explos. Pyrotech. 2017, 42(8): 854-856.
  • [47] Gramatica, P. Principles of QSAR Modeling: Comments and Suggestions from Personal Experience. Int. J. Quant. Struct.-Prop. Relat. 2020, 5(3): 1-37.
  • [48] Achary, P.G.R.; Toropova, A.P.; Toropov, A.A. Prediction of the Self‐Accelerating Decomposition Temperature of Organic Peroxides. Process Saf. Prog. 2020, paper 12189.
  • [49] Fayet, G.; Rotureau, P. Development of Simple QSPR Models for the Impact Sensitivity of Nitramines. J. Loss Prev. Process Ind. 2014, 30: 1-8.
  • [50] Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inf. 2010, 29: 476-488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cd28089-c09d-4e1b-91ad-93c5bbc007c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.