PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the durations of breaks in deposition – Speleothem case study

Identyfikatory
Warianty tytułu
Konferencja
Conference proceedings of the 13th International Conference “Methods of absolute chronology” June 5-7th, 2019, Tarnowskie Gory, Poland
Języki publikacji
EN
Abstrakty
EN
Speleothems provide one of the most continuous terrestrial archives. However, due to changing conditions in temperature/humidity or the chemistry of percolating water, sedimentation breaks (hiatuses) and erosional events are possible and are commonly recorded in speleothems. Sedimentation breaks with durations longer than the resolution of the studied record should be considered in potential speleothem age-depth models. The most classic and reliable solution to the problem is the independent construction of age-depth models for the parts of speleothems separated by the hiatuses. However, in some cases, it is not possible to obtain a sufficient number of dating results for reliable age-depth model estimation. In such cases, the problem can be solved by the application of other sources of chronological information. Here, based on a few speleothem examples, an alternative approach – oxygen isotopic stratigraphy – is used to estimate the chronology for the parts of speleothems where there is not enough chronological information for classic age-depth models. As a result, the deposition break duration can be estimated.
Wydawca
Czasopismo
Rocznik
Strony
154--170
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
autor
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Praha 6, Czech Republic
  • ZRC SAZU Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • ZRC SAZU Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
  • ZRC SAZU Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
autor
  • Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Praha 6, Czech Republic
  • ZRC SAZU Karst Research Institute, Titov trg 2, 6230 Postojna, Slovenia
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Ayalon, A, Bar-Matthews, M, and Kaufman, A, 2002. Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel. Geology 30: 303.
  • 2. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, Fischer H, Fluckiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Grønvold K, Gundestrup NS, Hansson M, Huber C, Hvidberg CS, Johnsen SJ, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen SO, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen ML, Steffensen JP, Stocker T, Sveinbjornsdottir AE, Svensson A, Takata M, Tison JL, Thorsteinsson Th, Watanabe O, Wilhelms F, and White JWC, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431-7005: 147-151, DOI: 10013/epic.20716.
  • 3. Baker A, Smart PL, Ford DC, 1993. Northwest European palaeoclimate as indicated by growth frequency variation of secondary calcite deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 100: 291-301, DOI: 10.1016/ 0031-0182(93)90059-R.
  • 4. Banner JL, Guilfoyle A, James EW, Stern LA, and Musgrove ML, 2007. Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A. Journal of Sedimentary Research 77 (8): 615–622, DOI: 10.2110/jsr.2007.065.
  • 5. Błaszczyk M, Hercman H, Pawlak J, and Szczygieł J, 2020. Paleoclimatic reconstruction in the Tatra Mountains of the western Carpathians during MIS 9–7 inferred from a multiproxy speleothem record. Quaternary Research – accepted, 10.1017/ qua.2020.69.
  • 6. Boch R, Cheng H, Spötl C, Edwards RL, Wang X, and Häuselmann Ph, 2011. NALPS: a precisely dated European climate record 120–60 ka. Climate of the Past 7: 1247 – 2011, DOI: 10.5194/ cp-7-1247-2011.
  • 7. Bosák P, Hercman H, Mihevc A and Pruner P, 2002. High resolution magnetostratigraphy of speleothems from Snežna Jama, Kamniške-Savinja Alps, Slovenia. Acta Carsologica 31: 15–32, DOI: 10.3986/ac.v31i3.377.
  • 8. Borówka RK, Kostrzewski A, and Zwolinski Z, 1985. Cave sediments from the Chocholowska Valley (the Tatra Mountains, Poland); interpretation of sequences and depositional processes. Quaestiones Geographicae: 5-24.
  • 9. Channell, JET, Xuan, C, and Hodell, DA, 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO‐1500). Earth Planet. Sci. Lett. 283: 14–2, DOI: 10.1016/j.epsl. 2009.03.012.
  • 10. Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X and Alexander EC, 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372: 82–91, DOI: 10.1016/j.epsl.2013.04.006.
  • 11. Comas-Bru, L, Rehfeld, K, Roesch, C, Amirnezhad-Mozhdehi, S, Harrison, SP, Atsawawaranunt, K, Ahmad, SM, Ait Brahim, Y, Baker, A, Bosomworth, M, Breitenbach, SFM, Burstyn, Y, Columbu, A, Deininger, M, Demény, A, Dixon, B, Fohlmeister, J, Hatvani, IG, Hu, J, Kaushal, N, Kern, Z, Labuhn, I, Lechleitner, FA, Lorrey, A, Martrat, B, Novello, VF, Oster, J, Pérez-Mejías, C, Scholz, D, Scroxton, N, Sinha, N, Ward, BM, Warken, S, Zhang, H, and the SISAL members: SISALv2 2020: A comprehensive speleothem isotope database with multiple age-depth models, Earth Syst. Sci. Data Discuss., in review.
  • 12. Couchoud I, Genty D, Hoffmann, D, Drysdale R and Blamart D, 2009. Millennial-scale climate variability during the Last Interglacial recorded in a speleothem from south-western France. Quat. Sci. Rev. 28: 3263–3274, DOI: 10.1016/j.quascirev.2009.08.014.
  • 13. Fairchild IJ and Baker A, 2012. Speleothem Science. From Process to Past Environments. Oxforfd John Wiley and Sons, 416 pp.
  • 14. Fankhauser A, McDermott F and Fleitmann D, 2016. Episodic speleothem deposition tracks the terrestrial impact of millennial-scale last glacial climate variability in SW Ireland. Quat. Sci. Rev. 152: 104–117, DOI: 10.1016/j.quascirev.2016.09.019.
  • 15. Fisher R, 1953. Dispersion on a sphere. Proc. R. Soc. Lond. 217: 295–305. DOI: 10.1098/rspa.1953.0064.
  • 16. Frisia, S, Borsato, A, Preto, N, and McDermott, F, 2003. Late Holocene annual growth in three Alpine stalagmites record the influence of solar activity and the North Atlantic oscillation on winter climate. Earth and Planetary Science Letters 216: 231-439, DOI: 10.1016/S0012-821X(03)00515-6.
  • 17. Hellstrom J, 2003. Rapid and accurate U/Th dating using parallel ion-counting multicollector ICP-MS. J. Anal. At. Spectrom. 18: 135–1346, DOI: 10.1039/B308781F.
  • 18. Hercman H, Nowicki T and Lauritzen SE, 1998. Development of Szczelina Chochołowska cave (Western Tatra Mts.), based on uranium-series dating of speleothems. Studia Geologica Polonica 113: 85–103.
  • 19. Hercman H and Pawlak J, 2012. MOD-AGE: An age-depth model construction algorithm. Quaternary Geochronology 12: 1–10, DOI: 10.1016/j.quageo.2012.05.003.
  • 20. Herich P, 2017. Demänová caves. The most extensive underground karst phenomenon in Slovakia. Bulletin of the Slovak Speleological Society: 27–38.
  • 21. Holden EN, 1990. Total half-lives for selected nuclides. Pure and Applied Chemistry 62: 941–958, DOI: 10.1351/ pac199062050941.
  • 22. Holzkamper, S, Mangini, A, Spotl, C, Mudelsee, M, 2004. Timing and progression of the Last Interglacial derived from a high alpine stalagmite. Geophysical Research Letter 31, L07201. DOI: 10.1029/2003GL019112.
  • 23. Holzkämper S, Spötl C and Mangini A, 2005. High-precision constraints on timing of Alpine warm periods during the middle to late Pleistocene using speleothem growth periods. Earth Planet. Sci. Lett. 236: 751–764, DOI: 10.1016/j. epsl.2005.06.002.
  • 24. Hu C, Henderson GM, Huang J, Xie S, Sun Y, and Johnson KR, 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters 266: 221-232, DOI: 10.1016/j.epsl.2007.10.015.
  • 25. Ivanovich M and Harmon RS, 1992. Uranium Series Disequilibrium. Applications to Earth, Marine, and Environmental Sciences,. Oxford, Oxford Science Publications: 910 pp.
  • 26. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC and Essling AM, 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C4: 1889–1906, DOI: 10.1103/PhysRevC.4.1889.
  • 27. Jelínek V, 1966. A high sensitivity spinner magnetometer. Stud. Geophys. Geod. 10: 58–78, DOI: 10.1007/BF02590052.
  • 28. Jelínek V, 1973. Precision A.C. bridge set for measuring magnetic susceptibility and its anisotropy. Stud. Geophys. Geod. 17: 36–48, DOI: 10,1007/BF01614027.
  • 29. Jo KN, Woo KS, Lim HS, Cheng H, Edwards RL, Wang Y, Jiang X, Kim R, Lee JI, Yoon HI and Yoo KC, 2011. Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea. Quat. Sci. Rev. 30: 1218–1231, DOI: 10.1016/j.quascirev.2011.02.012.
  • 30. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J, 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland, and NorthGRIP, J. Quat. Sci., 16, 299–307, DOI: 10.1002/jqs.622.
  • 31. Kern Z, Demény A, Perşoiu A, and Hatvani IG, 2019. Speleothem Records from theEastern Part of Europe and Turkey—Discussion on Stable Oxygen and Carbon Isotopes. Quaternary 2: 3–31.
  • 32. Kirschvink JL, 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geoph. J. Royal Astronom. Soc. 62: 699–718, DOI: 10.1111/j.1365-246X.1980.tb02601.x.
  • 33. Lauritzen SE, 1995: High-resolution paleotemperature proxy record during the last interglaciation in Norway from speleothems. Quaternary Research 43: 133–46, DOI: 10.1006/ qres.1995.1015.
  • 34. Lisiecki LE and Raymo ME, 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography 20: PA1003, DOI: 10.1029/2004PA001071.
  • 35. Lisiecki LE and Stern JV, 2016. Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanography, 31: 1368– 1394, DOI: 10.1002/2016PA003002.
  • 36. McDermott F, Atkinson TC, Fairchild IJ, Baldini LM, and Mattey DP, 2011. A first evaluation of the spatial gradients in δ 18O recorded by European Holocene speleothems. Global and Planetary Change, 79: 275-287.
  • 37. Meyer, MC, Spötl, C, and Mangini, A, 2008. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews 27: 476-496, DOI: 10.1016/j.quascirev.2007.11.005.
  • 38. Moseley, GE, Spötl, C, Cheng, H, Boch, R, Min, A, Edwards, LR, 2015. Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps. Quaternary Science Reviews 127: 229-239. DOI: 10.1016/j.quascirev.2015.07.012.
  • 39. Moseley, GE, Spötl, C, Brandstätter, S, Erhardt, T, Luetscher, M, and Edwards, RL, 2020. NALPS19: sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period, Clim. Past, 16: 29–50, DOI: 10.5194/cp-16-29-2020.
  • 40. Mioć P and Žnidarčič M, 1983. Osnovna geološka karta SFRJ (Geological map of SFRJ), list Ravne na Koroškem, 1 : 100 000. Beograd, Zvezni geološki zavod.
  • 41. Nowicki T, 1996. Geologia jaskini Szczelina Chochołowska, Wyżnia Brama Chochołowska, Tatry Zachodnie. (Geology of Szczelina Chochołowska Cave, Wyżnia Brama Chochołowska, Western Tatra Mts.). Przyroda TPN a Człowiek, t. I, Kraków-Zakopane: 102–104. (In Polish).
  • 42. Ogg JG, 2012. Geomagnetic polarity time scale. In: Gradstein F.M., Ogg J.G., Schmitz M., eds. The Geologic Time Scale. Amsterdam, Elsevier: 85–113.
  • 43.Pawlak J and Hercman H, 2016. Numerical correlation of speleothem stable isotope records using a genetic algorithm. Quaternary Geochronology 33: 1–12, DOI: 10.1016/j.quageo.2015.12.005.
  • 44. Příhoda K, Krs M, Pešina B and Bláha J, 1989. MAVACS - a new system of creating a non-magnetic environment for palaeomagnetic studies. Cuad. Geol. Ibér. 12: 223–250.
  • 45. Roberts, MS, Smart, PL, Baker, A, 1998. Annual trace element variations in a Holocene speleothem. Earth Planetary Science Letters 154: 237-246.
  • 46. Rossi C, Mertz-Kraus R, Osete MR 2014, Paleoclimate variability during the Blake geomagnetic excursion (MIS 5d) deduced from a speleothem record, Quaternary Science Reviews, 102: 166-180.
  • 47. Sadler PM, 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89: 569–584.
  • 48. Spötl C and Mangini A, 2007. Speleothems and paleoglaciers. Earth Planet. Sci. Lett. 254: 323–331, DOI: 10.1016/j. epsl.2006.11.041.
  • 49. Steponaitis E, Andrews A, McGee D, Quade J, Hsieh YT, Broecker WS, Shuman BN, Burns SJ and Cheng H, 2015. Mid-Holocene drying of the U.S. Great Basin recorded in Nevada speleothems. Quaternary Science Reviews 127: 174–185, DOI: 10.1016/j.quascirev.2015.04.011.
  • 50. Vaks A, Bar-Matthews M, Ayalon A, Matthews A, Frumkin A, Dayan U, Halicz L, Almogi-Labin A and Schilman B, 2006. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249: 384–399, DOI: 10.1016/j. epsl.2006.07.009.
  • 51. Vansteenberge S, Verheyden S, Cheng H, Edwards RL, Keppens E and Claeys P, 2016. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from a Belgian speleothem. Clim. Past 12: 1445–1458, DOI: 10.5194/cp-12-1445-2016.
  • 52. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, and Dorale JA, 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu cave, China. Science 294: 2345-2348, DOI: 10.1126/science.1064618.
  • 53. Wang YJ, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X, 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308: 854, DOI: 10.1126/science.1106296.
  • 54. Wang, P, Tian, J. Lourens, LJ, 2010. Stack of stable carbon and oxygen isotope record for 733 Mediterranean Sea sediments. Earth and Planetary Science Letters 290: 319, 330
  • 55. Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y, 2004. Timing, duration, and transitions of the last Interglacial Asian monsoon. Science 304, 575-578, DOI: 10.1126/science.1091220.
  • 56. Zupan Hajna N, Mihevc A, Pruner P and Bosák P, 2008. Palaeomagnetism and Magnetostratigraphy of Karst Sediments in Slovenia. Carsologica, 8, Založba ZRC, Ljubljana: 266 pp.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cce8f96-8a2d-4bb6-8767-e53f00bd292f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.