PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ti6Al4V titanium alloy used as a modern biomimetic material

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The principal aim of the article is to characterise titanium alloy Ti6Al4V as a biomimetic material. The work presents in particular the application of this alloy in regenerative/aesthetic medicine for implants of craniofacial elements against other its other applications in various branches of industry. The article presents a rapid manufacturing (RM) method of fabrication of elements to be used as implants from Ti6Al4V powder. It was demonstrated that the scaffolds created in Selective Laser Melting (SLM) have strictly defined geometric dimensions of an object and open pores, and the pores are regular and repeat within the whole volume of the object. Design/methodology/approach: Scanning electron microscopy was applied for showing the structure of innovative biomimetic materials made of Ti6Al4V powder. Findings: It was confirmed in SEM examinations that the structure of laser-sintered objects consists, within its entire volume, of regularly occurring pores with strictly specified geometric dimensions. Practical implications: Biomimetic materials can be used in regenerative/aesthetic medicine as implants. The purpose of the scaffolds produced is to enable the growth of soft tissue or bone tissue in craniofacial elements. Originality/value: Biomimetic materials can be used in regenerative/aesthetic medicine as implants. The purpose of the scaffolds produced is to enable the growth of soft tissue or bone tissue in craniofacial elements.
Rocznik
Strony
150--156
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Szkliniarz, Modern Metallic Materials - Present and Future, Department of Materials Science and Metallurgy, Silesian University of Technology, Katowice, 2009, (in Polish).
  • [2] A.T. Sidambe, Biocompatibility of Advanced Manufacture Titanium Implants—A Review, Materials 7/12 (2014) 8168-8188.
  • [3] M.A. Lopez-Heredia, J. Sohiera, C. Gaillardb, S. Quillarda, M. Dorgetc, P. Layrolle, Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering, Biomaterials 29/17 (2008) 2608-2615.
  • [4] G.P. Dinda, L. Song, J. Mazumder, Fabrication of Ti- 6Al-4V Scaffolds by Direct Metal Deposition, Metallurgical and Materials Transactions A 39/12 (2008) 2914-2922.
  • [5] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. AchtelikFranczak, Patent application no. P.411689, Polish Patent Office.
  • [6] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B Dobrzański, A. AchtelikFranczak, Fabrication of Scaffolds From Ti6Al4V Powders Using The Computer Aided Laser Method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.
  • [7] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.
  • [8] J. Chodkowski, Small Dictionary Chemical, General Knowledge, Warsaw, , 1976 (in Polish).
  • [9] L.A. Dobrzański, Fundamentals of materials science and physical metallurgy, Wydawnictwo Naukowo Techniczne, Warszawa, 2002 (in Polish).
  • [10] I.J. Polmear, Light Alloys, From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, 2005.
  • [11] H. Dong, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys. Elsevier, 2010.
  • [12] T. Farrell, Superalloy materials now cost competitive in vacuum furnace hot-zone construction, Industrial Heating 72/9 (2005) 129-133.
  • [13] J. Sieniawski, Criteria and methods of evaluation of the components of turbine aircraft engines, Rzeszów: Rzeszow Polytechnic publishing house, 1995 (in Polish).
  • [14] M.J. Donachie, S.J. Donachie, Superalloys a Technical Guide, ASM International, Materials Park, Ohio, 2002.
  • [15] T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power 22/2 (2006) 361-364
  • [16] H. Shin, S. Jo, A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials 24/24 (2003) 353-4364.
  • [17] P. Fratzl, Biomimetic materials research: what can we really learn from nature's structural materials?, Journal of the Royal Society Interface 4/15 (2007) 637-642.
  • [18] International project entitled “Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering BIOLASIN” headed by Prof. L.A. Dobrzański funded by the Polish National Science Centre under the decision DEC 2013/08/M/ST8/00818.
  • [19] A. Kaźnica, R. Joachimiak, T. Drewa1, T. Rawo, J. Deszczyński, New trends in tissue engineering, Arthroscopy and Arthritis Surgery 3/3 (2007) 11-16 (in Polish).
  • [20] R. Nieborak, D. Rolski, E. Mierzwińska-Nastalska, J. Kostrzewska-Janicka, S. Starościak, Prosthetic rehabilitation of patients with soft palate defects following surgery of neoplasms in the maxillofacial region: A case report, Prosthodontic LX/1 (2010) 50- 54 (in Polish).
  • [21] B. Borsuk-Nastaj, M. Młynarski, Selective laser melting (SLM) technique in fixed prosthetic restorations, Prosthodontic LXII/3 (2010) 203-210 (in Polish).
  • [22] N. Evans, E. Gentelman, J. Polak J, Scaffolds for stem cells, Materials Today 9/12 (2006) 26–33.
  • [23] S. Padilla, S. Sanchez-Salcedo, M. Vallet-Regi, Bioactive glass as precursor of designed architecture scaffolds for tissue engineering, Journal of Biomedical Materials Research Part A 81A (2006) 224–232.
  • [24] M. Schieker, H. Seit, I. Drosse et al., Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma 32 (2006) 114–124.
  • [25] M. Król, L.A. Dobrzański, Ł. Reimann, I. Czaja, Surface quality in selective laser melting of metal powders, Archives of Materials Science and Engineering 60/2 (2013) 87-92.
  • [26] L.A. Dobrzański, G. Matula. Basics of powder metallurgy and sintered materials, Open Access Library, International OCSCO World Press, 2012 (in Polish).
  • [27] P. Zimniak, Recirculation of the plastics used in additive manufacturing technique - SLS, Chemical Engineering and Equipment 5/49 (2010) 148-149 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ccdab5d-ec9a-495d-b1f1-2bae7ad99631
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.