PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Possible risk resulting from the recent decay of the dipolar component of the terrestrial magnetic feld

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we investigated the geomagnetic ground observatory data from 1980 to 2011 collected from World Data Center from 134 stations. To analyze the data we have applied spherical harmonic decomposition to obtain components associated with the Earth’s main magnetic feld and to calculate how the Earth’s dipole was varying in the aforementioned recent 31-year period. There is a visible ~2.3% decay of the dipole magnetic feld of the Earth. We note that the present-day value of the magnetic dipole intensity is the lowest one in the history of modern civilization and that further drop of this value may pose a risk for diferent domains of our life.
Czasopismo
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Institute of Geophysics Polish Academy of Sciences, 64 Księcia Janusza Str., 01-452 Warsaw, Poland
  • Institute of Geophysics Polish Academy of Sciences, 64 Księcia Janusza Str., 01-452 Warsaw, Poland
  • Institute of Geophysics Polish Academy of Sciences, 64 Księcia Janusza Str., 01-452 Warsaw, Poland
Bibliografia
  • 1. Bloxham J (1986) Evidence for asymmetry and fluctuation. Nature 322:13–14
  • 2. Brown M, Korte M, Holme R, Wardinski I, Gunnarson S (2018) Earth’s magnetic field is probably not reversing. Proc Natl Acad Sci 115(20):201722110
  • 3. Campuzano SA, Pavón-Carrasco FJ, Osete ML (2015) Non-dipole and regional effects on the geomagnetic dipole moment estimation. Pure Appl Geophys 172(1):91–107. https://doi.org/10.1007/s00024-014-0919-3
  • 4. Channell JET, Stoner JS, Hoddel DA, Charles CD (2000) Geomagnetic intensity for the last 100 kyr from the sub-Antarctic South Atlantic: a tool for inter-hemispheric correlation. Earth Planet Sci Lett 175:145–160. https://doi.org/10.1016/S0012-821X(99)00285-X
  • 5. Clement BM, Kent DV (1985) A comparison of two sequential geomagnetic polarity transitions (upper Olduvai and lower Jaramillo) from the Southern Hemisphere. Phys Earth Planet Int 39:301–313. https://doi.org/10.7916/D8NP2DXN
  • 6. Davies CJ, Constable CG (2020) Rapid geomagnetic changes inferred from Earth observations and numerical simulations. Nat Commun 11:3371. https://doi.org/10.1038/s41467-020-16888-0
  • 7. Finlay CC, Aubert J, Gillet N (2016) Gyre-driven decay of the Earth’s magnetic dipole. Nat Commun. https://doi.org/10.1038/ncomms10422
  • 8. Gillet N, Jault D, Finlay CC, Olsen N (2013) Stochastic modeling of the Earth’s magnetic field: inversion for covariances over the observatory era. Geochem Geophys Geosyst 14(4):766–786. https://doi.org/10.1002/ggge.20041
  • 9. Gillet N, Barrois O, Finlay CC (2015) Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12. Earth Planets Sp 67:71. https://doi.org/10.1186/s40623-015-0225-z
  • 10. Laj C, Kissel MC, Mazaud A, Michel E, Muscheler R, Beer J (2002) Geomagnetic field intensity, North Atlantic deep water circulation, and atmospheric Δ14C during the last 50 kyr. Earth Planet Sci Lett 200:179–192. https://doi.org/10.1016/S0012-821X(02)00618-0
  • 11. Liu Y, Luhmann J, Kajdič P et al (2014) Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat Commun 5:3481. https://doi.org/10.1038/ncomms4481
  • 12. Mazaud A, Laj C, Bard E (1989) Phenomenological model for reversals of the geomagnetic field. In: Lowes FJ et al (eds) Geomagnetism and paleomagnetism, NATO ASI series C: mathematical and physical sciences, vol 261, pp 205–214
  • 13. Nowaczyk NR, Arz HW, Frank U, Kind J, Plessen B (2012) Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth Planet Sci Lett 351–352:54–69. https://doi.org/10.1016/j.epsl.2012.06.050
  • 14. Olson P, Amit H (2006) Changes in Earth’s dipole. Naturwissenschaften 93(11):519–542. https://doi.org/10.1007/s00114-006-0138-6
  • 15. Opdyke ND, Mejia V (2004) Earth's magnetic field. In: Channell J, et al. (eds) Timescales of the Paleomagnetic Field. Geophys. Monogr. Ser., vol 145. AGU, Washington, DC, pp. 315–320. https://doi.org/10.1029/145GM24
  • 16. Reshetnyak MY, Pavlov VE (2016) Evolution of the dipole geomagnetic field. Observ Models Geomagn Aeron 56(1):110–124. https://doi.org/10.1134/S0016793215060122
  • 17. Sagnotti L, Scardia G, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Sprain CJ (2014) Extremely rapid directional change during the Matuyama-Bruhnes geomagnetic polarity reversal. Geophys J Intern 199:1110–1124. https://doi.org/10.1093/gji/ggu287
  • 18. Schmucker U (1999) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction—I. Methods Geophys J Int 136(2):439–454. https://doi.org/10.1046/j.1365-246X.1999.00742.x
  • 19. Sokoloff DD (2017) Earth’s magnetic moment during geomagnetic reversals. Izv Phys Solid Earth 53(6):855–859. https://doi.org/10.1134/S1069351317060064
  • 20. Thébault E, Finlay CC, Beggan CD et al (2015) International geomagnetic reference field: the 12th generation. Earth Planet Sp 67:79. https://doi.org/10.1186/s40623-015-0228-9
  • 21. Wang H, Kent DV, Rochette P (2015) Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas. PNAS. https://doi.org/10.1073/pnas.1505450112
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ccd0689-af15-4338-98c5-9a89937da1e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.