PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Potential environmental life cycle impacts of fuel cell electric vehicles powered by hydrogen produced from Polish coke oven gas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analysed the greenhouse gas (GHG) emissions of hydrogen fuel cell vehicles’(FCEVs’) life cycles. These included models running on hydrogen derived from coke oven gas (COG), which is a by-product of the coking process of coal and includes hydrogen, methane, and other gases. FCEVs and hydrogen have the potential to drive future mobility. Hydrogen can be separated from the COG in the process of pressure swing adsorption to obtain a purity of hydrogen that meets the requirements of a hydrogen FCEV. An environmental life cycle assessment (LCA) of FCEV powered by hydrogen produced from Polish COG was conducted. The direction of hydrogen production strategies in Poland was also presented. The analyses included the entire life cycle of FCEVs with the production of hydrogen from COG in a Polish coke plant. A comparative analysis of FCEVs and other alternative fuels was conducted, and the main determinants of GHG emissions of FCEV were given. Importantly, this is the first attempt at an environmental assessment of FCEVs in Poland.
Czasopismo
Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology; Krasińskiego 8, 40-019 Katowice, Poland
  • VSB - Technical University of Ostrava; 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
  • VSB - Technical University of Ostrava; 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
Bibliografia
  • 1. Shadidi, B. & Najafi, G. & Yusaf, T. A Review of hydrogen as a fuel in internal combustion engines. Energies 2021. Vol. 14. P. 6209-6229.
  • 2. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R. An overview of hydrogen as a vehicle fuel. International Journal of Hydrogen Energy. 2012. Vol. 16. P. 5511-5528.
  • 3. Safari, F. & Dincer, I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management. 2020. Vol. 205. P. 112182.
  • 4. Hydrogen law and regulation in Poland. Available at: https://cms.law/en/int/expert-guides/cms-expert-guide-to-hydrogen/poland. 2021.
  • 5. Burchart, D. Application of advanced environmental life cycle assessment methods to pathways of alternative transport fuels. Monograph. Politechnika Śląska. Gliwice. 2021. 170 p.
  • 6. Burchart-Korol, D. & Gazda-Grzywacz, M. & Zarębska, K. Research and prospects for the development of alternative fuels in the transport sector in Poland: A Review. Energies. 2020. Vol. 13. P. 2988-3002.
  • 7. Burmistrz, P. & Chmielniak, T. & Czepirski, L. & Gazda-Grzywacz, M. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. Journal of Cleaner Production. 2016. Vol. 139. P. 858-865.
  • 8. Stygar, M. & Brylewski, T. Contemporary low-emissions hydrogen-based energy market in Poland: Issues and opportunities, part I. International Journal of Hydrogen Energy 2015. Vol. 40. P. 1-12.
  • 9. Drożdż, W. & Elżanowski, F. & Dowejko, J. Hydrogen technology on the Polish electromobility market. Legal, economic, and social aspects. Energies. 2021. Vol. 14. P. 2357-2383.
  • 10. Karcz, A. Gaz koksowniczy jako surowiec do produkcji wodoru. Polityka Energetyczna. 2009. Vol. 12. P. 111-117. [In Polish: Coke oven gas as a raw material for the production of hydrogen].
  • 11. Sun, Q. & Dong, J. & Guo, X. & Liu, A. & Zhang, J. Recovery of hydrogen from coke-oven gas by forming hydrate. Industrial & Engineering Chemistry Research. 2012. Vol. 51(6205).
  • 12. Burmistrz, P. & Czepirski, L. & Gazda-Grzywacz, M. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach. In: E3S Web of Conferences. 2016. Vol. 10. 5 p.
  • 13. Chen, Z. & Zhang, B. & Peng, R. & Chuai, X. & Cui, X. & Kang, B. & Yan, W. & Zhang, J. Comprehensive modeling of sorption-enhanced steam reforming of coke oven gas in a fluidised bed membrane reactor. Energy & Fuels. 2020. Vol. 34. No. 3. P. 3065-3086.
  • 14. Chen, Y. & Hu, X. & Liu, J. Life cycle assessment of fuel cell vehicles considering the detailed vehicle components: comparison and scenario analysis in China based on different hydrogen production schemes. Energies. 2019. Vol. 12. P. 3031-3055.
  • 15. Yang, K. & Gu, Z. & Long, Y. & Lin, S. & Lu, C. & Zhu, X. & Li, K. Hydrogenation production via chemical looping reforming of coke oven gas. Green Energy & Environment. 2021. Vol. 6. P. 678-692.
  • 16. Zhang, B. & Chen, Y. & Kang, B. & Qian, J. & Chuai, X. & Peng, R. & Zhang, J., Hydrogen production via steam reforming of coke oven gas enhanced by steel slag-derived CaO. International Journal of Hydrogen Energy. 2020. Vol. 45. P. 13231-13244.
  • 17. Burchart-Korol, D. & Jursova, S. & Folęga, P. & Korol, J. & Pustejovska, P. & Blaut, A. Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic.
  • Journal of Cleaner Production. 2018. Vol. 202. P. 476-487.
  • 18. Szeszko, T. Production of hydrogen from coke oven gas in JSW Group. New Trends in Production Engineering. 2020. Vol. 3. P. 9-20.
  • 19. Więcław-Solny, l. & Krótki, A. & Spietz, T. & Dobras, Sz. & Chwoła, T. & Billig, T. & Stec, M. & Popowicz, J. & Kolon, P. & Bigda, J. & Lajnert, R. & Fitko, H. & Tatarczuk A. Studium wykonalności produkcji wodoru z gazu koksowniczego z wykorzystaniem technologii oferowanej przez CTYC w warunkach polskich. Feasibility Study. September, 2019. [In Polish: Feasibility study of hydrogen production from coke oven gas using the technology offered by CTYC in Polish conditions].
  • 20. Ohi, M.J. & Vanderborgh, N. & Gerald Voecks Consultants. Hydrogen fuel quality specifications for polymer electrolyte fuel cells in road vehicles. Report to the Safety & Codes and Standards. Program Fuel Cell Technologies Office. U.S. Department of Energy. November 2, 2016.
  • 21. Liu, X. & Reddi, K. & Elgowainy, A. & Lohse-Busch, H. & Wang, M. & Rustagi, N. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. International Journal of Hydrogen Energy. 2020. Vol. 45. P. 972-983.
  • 22. Ren, L. & Zhou, S. & Ou, X. Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China. Energy. 2020. Vol. 209(118482).
  • 23. Evtimov, I. & Ivanov, R. & Stanchev. H. & Kadikyanov, G. & Staneva, G. Life cycle assessment of fuel cells electric vehicles. Transport Problems. 2020. Vol. 15. No. 3. P. 153-166.
  • 24. Valente, A. & Iribarren, D. & Candelaresi, D. & Spazzafumo, G. & Dufour, J. Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. International Journal of Hydrogen Energy. 2020. Vol. 45. P. 25758-25765.
  • 25. Valente, A. & Iribarren, D. & Dufour, J. Harmonising methodological choices in life cycle assessment of hydrogen: A focus on acidification and renewable hydrogen. International Journal of Hydrogen Energy. 2019. Vol. 44. P. 19426-19433.
  • 26. Burchart-Korol, D. & Jursova, S. & Folęga, P. & Pustejovska, P. Life cycle impact assessment of electric vehicle battery charging in European Union countries. Journal of Cleaner Production 2020. Vol. 257. Paper No. 120476.
  • 27. Bicer, Y. & Khalid, F. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. International Journal of Hydrogen Energy. 2020. Vol. 45. P. 3670-3685.
  • 28. Chen, Y. & Ding, Z. & Wang, W. & Liu, J. Life-cycle assessment and scenario simulation of four hydrogen production schemes for hydrogen fuel cell vehicles. China Journal of Highway and Transport. 2019. Vol. 32. No. 5. P. 172-180.
  • 29. Staffell, I. & Scamman, D. & Abad, W.A. & Balcombe, P. & Dodds P.E. & Ekins P. & Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science. 2019. Vol. 12. P. 463-493.
  • 30. ISO 14687:2019. Hydrogen fuel quality - Product specification. 31. ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cc4f0c9-c331-4d44-a181-4f13489463b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.