Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Since a hierarchical notion of dimension is needed to ensure that a virtual, indirect orthogonality of dimensions is maintained in higher-dimensional spatial structures, a generic function for furling and unfurling of the fourth dimension in four-dimensional (4D) spatial structures is proposed. The furling allows three extra dimensions (above the regular three) in a 6D algebraic structure to be represented as a single fourth dimension and thus effectively facilitates morphing of the 4D spacetime into its dual 4D timespace. The effect of the furling of the extra three dimensions resembles that of compactification proposed by Kaluza-Klein theory yet without curling of the furled dimension. The furling supports reexpansion of stringy space into yet another dimension and so enables mapping of radius R (of a closed string being squeezed beyond its minimal radius) into an inverse radius 1/R, which was attributed to string duality, but is shown as due to duality of the 4D spatial structures of spacetime and timespace. Mathematically, it may appear as if further squeezing of the minimal string morphs it into an expanding pointletlike energy bubble so that the stringy spacetime reexpands in a new direction/dimension located within the bubbly dual timespace. So vibrating string is a mirror image of an energy bubblet, both of which do represent the same stringlet. By analogy, particle cast in spacetime could appear mathematically as having a mirror image (or its superpartner) cast in the dual timespace.
Rocznik
Tom
Strony
45--72
Opis fizyczny
Bibliogr. 133 poz., wz.
Twórcy
autor
- Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
Bibliografia
- [1] Czajko J., International Letters of Chemistry, Physics and Astronomy 17(2) (2014) 220-235.
- [2] Weyl H., Das Kontinuum. Untersuchungen über die Grundlagen der Analysis. Leipzig: Verlag von Veit & Comp., 1918, p.15.
- [3] Watson A., New Sci. 118 (1988) 41-45.
- [4] Tegmark M. Class. Quantum Grav. 14 (1997) L69-75.
- [5] Jones J.D.S., Mysteries of four dimensions. Nature 332 (1988) 488-489.
- [6] Borsuk K., Multidimensional Analytic Geometry. Warszawa: PWN, 1964, p.54 [in Polish].
- [7] Stark M., Analytic Geometry with Introduction to Multidimensional Geometry. Warszawa: PWN, 1970, p.377ff [in Polish].
- [8] Ivins W.M., Jr. Art & Geometry. A study in Space Intuitions. New York: Dover, 1946, p. 102.
- [9] De Vries H., Die vierte Dimension. Leipzig: 1926, p. 22.
- [10] Vopěnka P., Mathematics in the alternative set theory. Leipzig: Teubner, 1979, p. 10.
- [11] Poincaré H., Science and hypothesis. New York: Dover, 1952, pp. 38f, 49f, 57.
- [12] Greenberg M.J., Euclidean and non-Euclidean geometries. Development and history. New York: Freeman, 1993, p.293.
- [13] Heitsch W., Mathematik und Weltanschaung. Berlin: Akademie-Verlag, 1978, p. 247.
- [14] Czajko J., Stud. Math. Sci. 7(2) (2013) 25-39.
- [15] Czajko J., Appl. Phys. Res. 3(1) (2011) 2-7.
- [16] Cartan É., Sur la structure des groupes de transformations finis et continus. Paris: Librairie Nony, 1894 [public domain reprint 390270LV00014B/256/P], p. 23.
- [17] Cartan É., La topologie des groupes de Lie. Paris: Hermann, 1936, p. 7.
- [18] Schwarz J.H., Spacetime duality in string theory. [pp.69-87 in: Schwarz J.H. (Ed.) Elementary particles and the universe. Cambridge: Cambridge Univ. Press, 1991].
- [19] Witten E., Phys. Today April 1996, 24-30.
- [20] Hausdorff F., Zwischen Chaos und Kosmos oder vom Ende der Mataphysik. Baden-Baden: Agis Verlag, 1976, p.103.
- [21] Dedekind R., J. reine angew. Math. 50 (1855) 272.
- [22] Del Carmen Romero-Fuster M., Geometric contacts and 2-regularityof surfaces in Euclidean space. [p.307-325 in: Chéniot D. et al. (Eds.) Singularity theory. Proceedings of the 2005 Marseille Singularity School and Conference. World Scientific: Singapore, 2008, see p.309].
- [23] Poincaré H., L’avenir des mathématiques. Circolo Matematico di Palermo. Atti del IV Congresso Internationale dei Matematici. Roma, 1908, see p.15.
- [24] Czajko J., Chaos, Solit. Fract. 12 (2001) 951-967.
- [25] Czajko J., Chaos, Solit. Fract. 19 (2004) 479-502.
- [26] DeWitt B.S., Spacetime as a sheaf of geodesics in superspace. [pp.359-374 in: Carmeli, M., Fickler, S.I. & Witten, L. (Eds.) Relativity. New York: Plenum Press, 1970].
- [27] Czajko J., Chaos, Solit. Fract. 11 (2000) 2001-2016.
- [28] Czajko J., Stud. Math. Sci. 7(2) (2013) 40-54.
- [29] Riemann B., Schwere, Elektricitӓt und Magnetismus. Hannover: Carl Rümpler, 1876, p. 9ff.
- [30] Donaldson SK., Yang-Mills invariants of four-manifolds. [pp.5-40 in: Donaldson SK & Thomas CB (Eds.) Geometry of low-dimensional manifolds:1. Gauge theory and algebraic surfaces. Cambridge: Cambridge Univ. Press, 1990, see p. 38].
- [31] Czajko J., International Letters of Chemistry, Physics and Astronomy 11(2) (2014) 89-105.
- [32] Mal‟cev A.I., Foundations of linear algebra. San Francisco: Freeman, 1963, p. 276.
- [33] Cole E.A.B., N. Cim. 40A(2) (1977) 171-180.
- [34] Rauscher E.A., Lett. N. Cim. 7(10) (1973) 361-367.
- [35] Bombelli L. et al. Phys. Rev. Lett. 59 (1987) 521-4.
- [36] Verma R.C., Chandola, H.C. & Rajput, B.S., Acta Cien. Indica 9 (1983) 27-30.
- [37] Kim S.K., Physics: The fabric of reality. New York: Macmillan, 1975, p. 98.
- [38] Czajko J., Chaos, Solit. Fract. 11 (2000) 1983-1992.
- [39] Lanciani P., Found. Phys. 29(2) (1999) 251-265.
- [40] Kar K.C., Ind. J. Theor. Phys. 11(3) (1963) 75-80.
- [41] Kar K.C., Ind. J. Theor. Phys. 17(1) (1969) 1-11.
- [42] Tifft W.G., Astrophys. Space Sci. 244 (1996) 187-210.
- [43] Chudinov E.M., Mathematical problems of physics. Moscow: 1981, p. 7 [in Russian].
- [44] Alvarez-Gaume L., Phys. Scripta T15 (1987) 26-33.
- [45] Swamy N.V.V.J. & Samuel M.A., Group theory made easy for scientists and engineers. New York: Wiley-Interscience, 1979, p. 72.
- [46] Greider K.R., Found. Phys. 14(6) (1984) 467-505, see p. 479f.
- [47] Jancewicz B., Multivectors and Clifford Algebra in Electrodynamics. Singapore: World Scientific, 1988, p. 244.
- [48] Hermann R., Vector bundles in mathematical physics I. New York: Benjamin, 1970, pp. 26, 29.
- [49] Grünbaum A., Geometry and chronometry in philosophical perspective. Minneapolis, MN: Univ. of Minnesota Press, 1968, p. 34.
- [50] Hestenes D., Simon Stevin Quart. J. Pure Appl. Math. 62 (1988)
- [51] Macdonald A., Linear and geometric algebra. Lexington, KY, 2013, p. 40.
- [52] Kar K.C. & Dutta C., Ind. J. Theor. Phys. 16(1) (1968) 1-6.
- [53] Törnebohm H., A logical analysis of the theory of relativity. Stockholm: Wiksell, 1952, p. 46.
- [54] Kasner E., Am. J. Math. 43 (1921) 126.
- [55] Rahula M., New problems in differential geometry. Singapore: World Scientific, 1993, p. 91.
- [56] Hatzikonstantinou P. & Moyssides P.G., Phys. Lett. A 140 (1989) 85-89, see p.88f.
- [57] Teli M.T., Ind. J. Pure Appl. Phys. 23 (1985) 1-5
- [58] Cole E.A.B., Phys. Lett. 76A(5-6) (1980)157.
- [59] Cole E.A.B., N. Cim. 44B (1978) 171-180.
- [60] Cole E.A.B., Phys. Lett. 75A (1979) 29-30.
- [61] Cocke W.J., Astrophys. Space Sci. 244 (1996) 211-218.
- [62] Barashenkov V.S. & Yur‟iev M.Z., http://www.chronos.m.su.ru/seminar/ereports_of_seminar.html
- [63] Arkani-Hamed N., Dimopoulos S. & Dvali G., Phys. Lett. B429 (1998) 263-272.
- [64] Antoniadis I. et al. Phys. Lett. B436 (1998) 257-263.
- [65] Finkelstein D. & Rodriguez E., Quantum time-space and gravity. [pp.247-54 in: Penrose R. and Isham C.J. (Eds.) Quantum concepts in space and time. Oxford: Clarendon Press, 1986].
- [66] Thorne K.S., Black holes and time warps. New York: W.W. Norton, 1994, p. 128.
- [67] Kasner E., Trans. AMS 27 (1925) 101-105, see p. 104.
- [68] Kasner E., Am. J. Math. 43(2) (1921) 130-133.
- [69] Fujitani T., Ikeda M. & Matsumoto M., J. Math. Kyoto Univ. 1-1 (1961) 43-61.
- [70] Freund P.G.O., Physica 15D (1985) 263-269.
- [71] Möbius., On higher space. [in excerpts from “Der barycentrische Calcul.” Leipzig, 1827, part 2 ch.1 – pp.525-526 in: Smith D.E.A (Ed.) Source book in mathematics II. New York: Dover, 1959, see p.5 26].
- [72] Jammer M., Concepts of space. The history of theories of space in physics. New York: Dover, 1993, pp. 154, 173, 177.
- [73] Keyser C.J., The human worth of rigorous thinking. Essays and addresses. New York: Columbia Univ. Press, 1916, p. 106.
- [74] Cartan H., Les espaces métriques fondés sur la notion d’aire. Paris: Hermann, 1933, p.7.
- [75] Rucker R., The fourth dimension. Toward a geometry of higher reality. Boston: Houghton Mifflin, 1984, p. 202.
- [76] Cajori F., Am. Math. Month. 33 (1926) 397.
- [77] Poincaré H., Mathematics and science. Last essays. New York: Dover, 1963, pp. 17, 28.
- [78] Minkowski H., Space and time. [pp.75-91 in: Lorentz H.A. et al. The Principle of Relativity. New York: Dover, 1923, see p. 83].
- [79] Deligne P., Freed D.S., Supersolutions. [pp.227-355 in: Deligne P. et al. Quantum Fields and Strings: A Course for Mathematicians I. Providence, RI: AMS, 1999, see p. 231].
- [80] Snapper E., Troyer R.J., Metric Affine Geometry. New York: Dover, 1989, p. 59.
- [81] Hausner M., A vector approach to geometry. York: Dover, 1998, p. 330.
- [82] Deligne P., Freed D.S., Sign Manifesto. [pp.357-363 in: Deligne P. et al. Quantum Fields and Strings: A Course for Mathematicians I. Providence, RI: AMS, 1999, see p. 358.
- [83] Martin L., General relativity. A guide to its consequences for gravity and cosmology. New York: Ellis, Harwood, 1988, p. 20.
- [84] Jaccarini A., Can. J. Phys. 51 (1973) 1304-1312.
- [85] Geroch R., General relativity from A to B. Chicago: The Univ. of Chicago Press, 1978, pp. 166, 171.
- [86] O‟Neill B., Semi-Riemannian geometry with applications to relativity. New York: Academic Press, 1983, p. 171.
- [87] Chodos A., Comments Nucl. Part. Phys. 13 (1984) 171-81.
- [88] Czajko J., Chaos, Solit. Fract. 21 (2004) 261-271.
- [89] Czajko J., Chaos, Solit. Fract. 21 (2004) 501-512.
- [90] Bergmann P.G., Trans. NY Ac. Sci. 38 (1977) 1.
- [91] Mooij J.J.A., Synthese 16 (1966) 53.
- [92] Ambrose A., A controversy in the logic of mathematics. Univ. of Wisconsin Press [reprinted from “The Philosophical Review” of Nov‟ 1933].
- [93] Diederich W., Konventionalität in der Physik. Wissenschaftstheoretische Untersuchungen zur Konventionalismus. Berlin, 1974, pp. 16, 22.
- [94] Milne E.A., Relativity, gravitation, and world-structure. Oxford: Clarendon Press, 1935, p. 289.
- [95] D‟Abro A., The evolution of scientific thought. From Newton to Einstein. New York: Dover, 1950, pp. 55, 348.
- [96] Riemann B. Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. pp. 272-282 [in: Weber H. (Ed.) Bernhard Riemann’s gesammelte mathematische Werke. New York: Dover, 1953].
- [97] Freudenthal H., Im Umkreis der sogenannten Raumprobleme. [pp. 322-327 in: Bar- Hillel Y. et al. (Eds.) Essays on the foundations of mathematics. Jerusalem: At the Magnus Press, 1961].
- [98] Reichenbach H., Gesammelte Werke III: Die philosophische Bedeutung der Relativitätstheorie. Braunschweig: Vieweg, 1979, p. 394.
- [99] Esposito G., Quantum gravity, quantum cosmology and Lorentzian geometries. Berlin: Springer, 1992, p. 230.
- [100] Band W., Phys. Rev. 61 (1942) 702-707.
- [101] Laurent B., Introduction to spacetime. Singapore: World Scientific, 1994, p. 32.
- [102] Cartan E., La théorie des groupes et les recherches récentes de géométrie différentielle. [pp.891-904 in: Cartan E. OEuvres complètes. Part 3.1. Paris: Éditions du CNRS, 1984, see p. 892].
- [103] Cartan, E., Leçons sur la géométrie projective complexe. Paris: Gauthier-Villars, 1950, p. 187.
- [104] Cartan E., L‟axiome du plan et la géométrie différentielle métrique. [pp. 1057-1065 in: Cartan, E. OEuvres complètes p.III v.2. Paris: CNRS, 1984, see p. 1058].
- [105] Cartan E., Les récents généralisations de la notion d‟espace. [pp. 863-889 in: Cartan E. OEuvres complètes. Part 3.1. Paris: Éditions du CNRS, 1984, p. 864].
- [106] Pierpont J., Am. Math. Month. 30 (1923) 425.
- [107] Gora P. & Boyarsky A., Am. Math. Mon. 99 (1992) 159.
- [108] Chung D.J.H., Kolb E.W. & Riotto A., arXiv:hep-ph/0008126 14-Aug-2000.
- [109] Friedlander F.G., The wave equation on a curved spacetime. Cambridge: Cambridge Univ. Press, 1975, p. 228f.
- [110] Ferreira L.A., Leite E.E. Nucl. Phys. B 547 (1999) 471-500.
- [111] Takens F., IHES Publ. Math. 43 (1973) 47-100.
- [112] Klainerman S.L., Commun. Pure Appl. Math. 33 (1980) 43-101.
- [113] John F., PNAS USA 77(4) (1980) 1759-1760.
- [114] Bastin K. & Kilmister C.W., Combinatorial physics. Singapore: World Scientific, 1995, p. 149.
- [115] Cartan E., Leçons sur la géométrie des espaces de Riemann. Paris: Gauthier-Villars, 1963, pp. 11, 14ff.
- [116] Reichenbächer E., Phys. Z. 29 (1928) 908-911.
- [117] Goffman C., PNAS USA 63 (1969) 38-39.
- [118] Goffman C. & Ziemer W.P., PNAS USA 65 (1970) 491-4.
- [119] Gal‟tsov D.V., (2004) http://arxiv.org/PS_cache/hep-th/pdf/0112/0112110.pdf .
- [120] Coxeter H.S.M., Am. Math. Month. 50 (1943) 217.
- [121] Poincaré H., C.R. Acad. Sci. Paris 140 (1906) 113.
- [122] Nicholson W.K., Introduction to abstract algebra. New York: Wiley, 1999, pp. 79, 512 & 111.
- [123] Poincaré, H., The value of science. New York: Dover, 1958, p. 54.
- [124] Cartan H., Sur la notion de dimension. [pp.1414-1425 in: Remmert R. & Serre J.-P. (Eds.) Cartan H. Oeuvres. Collected works III. Berlin: Springer-Verlag, 1979, see p. 1415].
- [125] Lebesgue H., Math. Ann. 70 (1911) 166.
- [126] Lebesgue H., Fund. Math. 2 (1921) 256, see p. 265.
- [127] De Wit B. & Van Proeyen A., Int. J. Mod. Phys. 3 (1994) 31-47.
- [128] Baylis W.E. & Sobczyk G., J. Theor. Phys. 43(10) (2004) 2061-2079.
- [129] Artin E., Galois theory. Notre Dame, IN: 1959, p. 4.
- [130] Smiley M.F., Algebra of matrices. Boston: Allyn & Bacon, 1965, p. 87.
- [131] Curtis C.W., Linear algebra. An introductory approach. Boston: Allyn & Bacon, 1968, p. 37.
- [132] Berberian S.K., Introduction to Hilbert space. New York: Oxford Univ. Press, 1961, p. 23.
- [133] Cartan E., Leçons sur la théorie des espaces a connexion projective. Paris: Gauthier-Villars, 1937, p. 216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cc0c723-4311-4d0f-947a-41b6e03c183d