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ABSTRACT 

Since a hierarchical notion of dimension is needed to ensure that a virtual, indirect orthogonality 

of dimensions is maintained in higher-dimensional spatial structures, a generic function for furling and 

unfurling of the fourth dimension in four-dimensional (4D) spatial structures is proposed. The furling 

allows three extra dimensions (above the regular three) in a 6D algebraic structure to be represented as 

a single fourth dimension and thus effectively facilitates morphing of the 4D spacetime into its dual 

4D timespace. The effect of the furling of the extra three dimensions resembles that of 

compactification proposed by Kaluza-Klein theory yet without curling of the furled dimension. The 

furling supports reexpansion of stringy space into yet another dimension and so enables mapping of 

radius R (of a closed string being squeezed beyond its minimal radius) into an inverse radius 1/R, 

which was attributed to string duality, but is shown as due to duality of the 4D spatial structures of 

spacetime and timespace. Mathematically, it may appear as if further squeezing of the minimal string 

morphs it into an expanding pointletlike energy bubble so that the stringy spacetime reexpands in a 

new direction/dimension located within the bubbly dual timespace. So vibrating string is a mirror 

image of an energy bubblet, both of which do represent the same stringlet. By analogy, particle cast in 

spacetime could appear mathematically as having a mirror image (or its superpartner) cast in the dual 

timespace.  

 

Keywords: Furling of higher dimensions; virtual orthogonality; multispatial hyperspace 

 

 

 

1.  INTRODUCTION 

 

Abel and Galois have proved that polynomial equations (as algebraic prototypes of 

abstract geometric dimension) of degrees higher than 4 are insolvable in general [1]. The 

insolvability posted operational restriction on maximal degree of polynomial equations. It 

constrains thus also the number of abstract dimensions that can be directly represented in 

single geometric or quasi-geometric spatial structure. This is because constructability of such 

structures depends on the operational procedures that correspond to the structures. If a 

structural equation is insolvable in general, then the object it describes cannot be always 

unambiguously constructed [1].  
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Impossibility of construction means that the structure depicted by the structural equation 

cannot exist (i.e. it cannot be constructed) as a single standalone object and so it actually 

describes a conglomerate of certain simpler objects.  

Insolvable structural equations should be so rearranged as to make them solvable, of 

course. Yet the insolvability also indicates a deeper conceptual problem, namely that the 

former mathematics that ignored the insolvability can be unreliable if not outright faulty.  

Because structures and their operational procedures always come hand in hand, the 

insolvability implies impossibility of constructing higher-dimensional (HD) structures by an 

analogy to single 3D spaces. The impossibility, in turn, means that yet another way of 

constructing geometric HD structures is needed [1]. Weyl wrote that multidimensional sets 

are built through – what he called – mathematical process [2], which is indicative of an 

arbitrary way of unrestrained mathematical thinking applied to invent basic notions.  

The insolvability is not unsurmountable obstacle whose very presence needs to be 

tacitly concealed, as it was in former mathematics, but it is an indication that the former 

mathematics, which ignored hints supplied by previously unanticipated experiments, was 

rather unrealistic (and sometimes even plainly wrong) in its previous approach to issues of 

dimensionality and spatiality in general. Mathematics disassociated from experimental 

suggestions often created not only nonexistent yet possible worlds, but also some whose 

implementation in the actually existing physical reality is not operationally feasible. Pure 

mathematics did create – in Watson‟s words – fake worlds [3], even without violating any 

rules, i.e. when it was proceeding “by the book”, so to say. Some authors suggested that 

spaces other than (3+1)D might correspond to dead worlds [4]. Nonetheless, HD spatial 

structures (as opposed to 3D single spaces) can be constructed in the context of an abstract 

multispatial hyperspace (MH), which – as a compound spatial structure of higher order and 

greater complexity – is conceptually different from any 3D single space [1].  

Hence an insolvable structural equation should be recast in the MH in order for it to 

become solvable, at least in principle, and thus specify a constructible object. Otherwise, 

inferences based upon an insolvable structural equation can lead to misconceptions.  

Since the physical world we live in is already established and seems to be fully, if not 

perfectly, operational (i.e. it has been meaningfully constructed) and there exist many quite 

independently varying distinct magnitudes (i.e. pure abstract dimensions), a reliable way to 

operationally admissible implementation of multidimensionality already exists in the Nature. 

Yet the simplistic inference that (because allegedly there is no reason to limit the number of 

independently varying parameters) the number of dimensions a space can have is also 

unlimited [5], is not admissible. Only the number of quasi-geometric spaces and spatial 

structures is unlimited and so is the total number of dimensions in the whole physical reality, 

but the number of dimensions within a single space is surely limited by feasibility of the 

operations that can be performed on objects depicted within the space, which – according to 

insolvability of polynomials of degree higher than 4 – is apparently limited to just 4, per 

proofs devised by Abel and Galois [1]. One may view dimension as an order of a matrix of 

vectors [6] or perhaps – equivalently – as that of systems of linear equations [7]. Since 

Grassmann and Cayley invented higher than 3D conceptual spaces, abstract geometry has lost 

its connection to geometric 3D single space [8]. The argument that HD geometries are 

thinkable [9] does not guarantee that HD objects are constructible by the very same traditional 

mathematical methods that have been developed for simple geometric objects fully immersed 

in geometric 3D single spaces.  

Hence it is up to a (new) synthetic mathematics to discover and/or synthesize actual 

meaning of dimensionality and spatiality, preferably by taking cues from hints supplied by 



International Letters of Chemistry, Physics and Astronomy 2 (2015) 45-72 

-47- 

unanticipated results of curious experiments. Instead of inventing an artificial reality whose 

existence is then usually just postulated, we should learn about attributes of our abstract 

geometrical concepts from the various ways the Nature operates on them [10].  

However, synthesizing new concepts (or perhaps just enhancements to some already 

established notions) from strange experimental hints requires that one should renounce 

making any existential postulates, regardless of whether they are made explicitly or just 

tacitly disguised as definitions. For postulating existence creates nonexistent artificial reality 

and so it effectively defeats the very purpose of the prospective syntheses. Since all former 

geometrical theories are actually conventional (according to Poincaré), their abstract axioms 

are just definitions in disguise [11] p. 50, [12] p. 293.  

Operational completeness of legitimate procedures should ensure the feasibility of an 

actual construction of the geometric structures that correspond to their (valid) operational 

procedures. Anything else may turn into an artificial world that could exist only on paper, no 

matter how persuasively its existence might be postulated. For mathematical theorems are 

only formally true but not always logically true, because their truth is not independent of any 

interpretation or regardless of how the world was constructed [13], for proofs of theorems 

depend on axioms and primitive notions, the meaning of which relies on current 

interpretations of the paradigms that were accepted as true or just self-evident.  

Yet because usually there are numerous ways to perform a compound operation with 

multiple hierarchically arranged stages that depend on selected sets of parameters and 

variables representing independently varying magnitudes, experimental hints can provide 

valuable cues as to which ways are preferred by the Nature for each set of circumstances. 

Since we do not always know right up front all the parameters and variables involved in the 

given set of circumstances that defines the actual situation, the Nature can show us (via 

strange experiment results) what is really needed for the (actually implemented) operations to 

succeed in the given situation before we can fully define it. Note that any predefined situation 

could unintentionally fix (or even eliminate) some of its features.  

Case in point: former mathematics allowed operational nonsenses to be perpetuated for 

centuries [14] even though it has developed proven evidence that could have refuted at least 

some of them, were it not for the fact that experiments (including valid proofs as 

mathematical counterparts of physical experiments) have been commonly disregarded in the 

past. Inconvenient evidence was routinely ignored in mathematics (if their proofs cast a 

shadow of doubt on the validity of previously accepted pure-mathematical axioms or on our 

espoused paradigms, no matter how unrealistic the preconceived mathematical ideas might 

be). And in physics too, if unanticipated results of experiments contradicted some man-made 

ideas about the Nature and the ways it is allegedly supposed to work [15].  

The tacitly forgotten inconvenient (though proven) achievements of Abel, Galois and 

Lagrange is yet another example of rather surreal approach to previously recognized (but 

unanticipated and thus difficult to accept by their successors) mathematical results [1]. It is 

possible to postulate existence of certain attributes admissible for one object/situation and 

then tacitly (yet often quite inadvertently) carry over these attributes onto a different 

object/situation, where the same attributes may not be appropriate. This could be done by 

such innocuous statement as “let a group G generated by r independent infinitesimal 

transformations be given [hence: exists]” [16], which can pertain to an abstract „space‟ of 

certain groups [17], and then apply the theorems proven for such abstract groups also to some 

less abstract geometric objects whose operational structures are entirely different [16]. What 

is admissible for very abstract algebraic objects is not always appropriate for more restrictive 

geometrical objects, whose construction can be rigorously constrained.  
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The need to rectify scientific misconceptions (as opposed to often silly unscientific 

ones, whose origin could usually be traced to students) is prompted by past theoretical 

developments, some of which stumbled upon inadequate tools of former mathematics. An 

example which just cannot be ignored any longer is the curious abstract string duality that 

apparently causes reexpansion of the underlying stringy space into yet another distinct 

dimension when closed string is being squeezed beyond its minimal radius [18,19]. Note that 

the peculiar reexpansion is not contingent upon one‟s acceptance of the string theories. It is an 

issue related to singularity in general and to duality of abstract spatial representations of 

geometric objects in particular. For the reexpansion resembles similar curious behavior of 

Lagrange resolvents [1], which emerged prior to string theories.  

Since spatial reexpansion is a structural morphing [1], topology could not address the 

issue [20]. For the spatial morphing involves dual representations of (3+1)D and (1+3)D 

spatial structures, which when taken together, add only one extra dimension though [21]. 

Although for the ease of devising abstract proofs separate spaces of tangent vector fields and 

normal vector fields were oftentimes considered [22], such a theoretical approach is not 

helpful for conceptual investigation of actual geometrical spaces. As a matter of fact, even 

Poincaré admitted that geometry of 3+ dimensions is qualitatively different [23].  

 

 

2.  SUMMARY OF OPERATIONAL RESTRICTIONS ON DIMENSIONALITY 

 

Since three-dimensional (3D) spaces cannot contain more than three unique mutually 

orthogonal generic directions (understood as the geometric dimensions that correspond to 

distinct, independently varying magnitudes), in order to maintain abstract orthogonality in 

higher-dimensional (HD) quasi-spatial structures one has to admit abstract multispatial 

hyperspace (MH) comprising few hierarchically arranged 3D single spaces and their dual 3D 

spaces [1,24,25].  

Since every dual linear vector space (LVS) is orthogonal to its primary space, virtual 

orthogonality (between the dimensions of the primary and its dual space) is thus virtually 

established in the MH. For dimensions higher than 3
rd

 within the dual space, which is always 

orthogonal to the primary space, are orthogonal to all other dimensions by belonging to the 

dual space [1].  

Hence virtual (indirect) orthogonality of higher than 3
rd

 dimensions is hierarchical. 

Higher dimensions are thus quantized in triples. Maintaining virtual orthogonality is 

indispensable for preservation of distances. Without this feature spatial structures would be 

pointless and as such meaningless [1].  

When triple Cartesian product is viewed as threefold extended subspace {ℝ3
} with its 

own, native length-vector basis |ℝ, it is equivalent to a tripartite function subspace ℝℝ
  [1] 

 

ℝ   ℝ   ℝ  {ℝ }  ℝℝ
                    {  }    

 
 .      (1) 

 

The same must be true of 3D representation of temporal intervals { 3
} in their native 

vector basis |  because of duality of spatial and temporal representations.  But in a foreign 

vector basis (wherein 3D curve could not be directly represented), the tripartite functions must 

be furled (dimensionally reduced) into an indirect 1D yet curvilinear representation:  

 

 ℝℝ
  ℝ 

            
   ℝ

 
.              (2) 
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Conversely, this can be viewed as a spatial expansion of sorts too, when curve from 

dual space is unfurled (or transformed in reverse) from a foreign vector basis to its own native 

vector basis wherein it can be directly represented and thus appear as a composed 3D object. 

The same object could appear thus as unfurled 3D structure in its native vector basis and as 

furled 1D structure in the foreign vector basis that is dual to its native basis.  

Nevertheless, the unfurled 3D curve that is directly representable in the vector space 

equipped with vector basis native to the curve can also be indirectly represented in a dual 

vector space equipped with vector basis that is foreign to the 3D curve if the 3D curve is 

furled into 1D representation, because the furled 1D curve is independent of the foreign vector 

basis. Furled representation is dual to its unfurled (primary) representation.  

It was also shown in [1] that – due to duality of spatial and temmporal representations 

and the fact that elapsing time coordinate is not just superposed but also superimposed on all 

three length-based regular spatial coordinates – presence of 4D spacetime structure 𝕽4
 

implies of necessity presence of its dual 4D abstract quasi-spatial timespace structure 𝕿4
  

 

  ℝ
  ℝℝ

    ℝ
           

    
    ℝ 

             (3) 

 

with time-related base vectors though. Hence furling and unfurling of curves overcomes the 

restriction on the maximal number of dimensions present within any single geometric 3D 

space posed by general insolvability of polynomials of degree higher than 4.  

Nevertheless, both spacetime and timespace are 4D quasi-spatial structures, not really 

regular geometric spaces like the Euclidean 3D single space. From the standpoint of the 

former single-space paradigm of physical reality one could also say that the spacetime is a 

sheaf of geodesics in a superspace, which itself is a stratified union of manifolds [26]. Note 

that in the former mathematics the connotation of the term „space‟ was akin to „set‟. It could 

be confusing, because the term „space‟ alluded to constructible geometric space.  

 

 

3.  REPRESENTATIONS OF LINEAR OBJECTS IN 4D SPATIAL STRUCTURES 

 

In the 4D spacetime the elapsed time coordinate/subspace  1
 is indirectly represented 

by 1D time line (or by time curve in general). Time interval is pictured in sppacetime as an 

imaginary length interval  ℝ
       where c denotes the speed of light in vacuum (or in the 

given medium) that is assumed as being universally or at least locally constant. In the usual 

length-based vector base |ℝ, which is foreign to time flow, the time line/curve interval cannot 

be represented directly and thus it must be furled. For it is only indirectly pictured there as an 

extra, imaginary (hence foreign) 1D length interval.  

Relying on hints supplied by Lorentz‟s experiments Einstein got the idea of time (as 

extending the 3D single space into 4D spacetime) quite right, even though his special theory 

of relativity (STR) emerged before most recent mathematical theories of generic dimension 

came up. Yet elapsing time is not only extending the usual three length-based space (LBS), 

but it is superimposed on the latter too [1]. Therefore the STR (and then also Minkowski‟s) 

depiction of relationships existing between the LBS and intervals of time flow is not entirely 

correct. It clearly pertains to elapsed time, but it is valid only when the time interval is 

straightlinear, not for – curvilinear in general – flow of time.  

Although we do not have clear picture of interdependence of these two mutually dual 

spatial structures of spacetime and timespace in mathematics yet, combining physical and 

mathematical evidence can allow us to uncover necessary features of these two abstract quasi-
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spatial structures. When taken alone, neither mathematics nor physics can describe them 

adequately enough to reveal all their attributes. But when combined, mathematical 

requirements of operational validity and physical hints paint pretty convincing picture of how 

these two mutually dual quasi-geometric spatial structures are interrelated, indeed.  

Inferences by analogy are not substitutes for proofs, of course, but it is a good start to 

get a preliminary idea of what the interdependence of spacetime and timespace really is. The 

eqs. (3) show that only in their native vector bases the respective intervals of length and time 

flow can be represented directly (i.e. unfurled), whereas in their foreign vector bases, which 

are dual to their native bases, they can be depicted only indirectly (i.e. when furled). The 

nuanced conceptual distinction was not always explicitly recognized before, because – due to 

undue influence of mathematically challenged former physics – the 4D spacetime was 

previously considered as the only possible extension of the 3D LBS.  

Despite clear prior mathematical evidence that (3+1)D and (1+3)D spatial structures are 

formally indistinguishable [21,20], both Einstein and Minkowski ignored the fact that a 4D 

spatial structure of timespace can exist as an extension of a certain (dual to the LBS) single 

3D time-based space (TBS). This is not a critique of their achievements, but strong argument 

for truly integrated approach to teaching of mathematics and physics in parallel. Physics can 

guide mathematics by providing checks to otherwise unconstrained abstract mathematical 

thinking. When taught standalone, neither of these sciences can avoid inadvertent creation of 

scientific misconceptions.  

 

 

4.  MAPPING RADIUS FROM LBS INTO INVERSE RADIUS FROM TBS 

 

In timespace, however, the distance coordinate/subspace ℝ1
 is indirectly represented by 

1D distance line (or curved) interval ℝ 
  cast in a certain time-based vector base | , which is 

foreign to distance intervals.  

Just as for spacetime (wherein any time interval is indirectly pictured as an imaginary 

length interval  ℝ
      ), I conjecture thus that in timespace length interval is pictured 

indirectly in time versors as ℝ 
       where R is a radial, in general, distance interval.  

Because the regular length-based distance intervals cannot be represented directly in a 

foreign time-based vector base, they are pictured indirectly as an extra, i.e. imaginary (or 

foreign) elapsed length/distance interval that must be furled as a 1D object therein. Note that 

this conjecture is not an existential postulate, but a statement of theoretical fact (that is 

supported by experimentally well confirmed special relativity). Its truth should also be 

confirmed by some other experiments. For now, however, we have only a mathematical result 

of reasoning from string theory (as a thought-experiment – hence a counterpart of physical 

experiment) to show that the conjecture is true indeed, at least in string theory.  

From the relation (2) and the representation of radius within the timespace 𝕿4 
that is 

conjectured above we obtain raw mapping of the string radius R into its inverse radius1/R 

 

  ℝℝ
  ℝ 

        ℝ 
  

  

 
        

  

 
            (4) 

 

which was usually attributed to string duality [19] p.29, but mathematically it arises from the 

inherent duality of the twin 4D spatial structures of spacetime 𝕽4
 and timespace 𝕿4

.  

The implication (4) suggests that these two spatial structures are intertwined like yin 

and yang, so that if a quasi-geometric object in the spacetime is shrinking then its dual image 
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in the timespace is rising and vice versa. But unlike the yin-yang symbolic pair, the mutually 

dual abstract quasi-spatial structures of spacetime and timespace refer to the same 

pangeometric, and thus identical, physical entity. These two dual spatial structures are just 

inverted mirror images of each other that are superimposed upon each other.  

The conjecture about furled distance intervals already gives us tentative answer to the 

question of why the radius of a closed string, when squeezed apparently beyond minimal 

radius, maps to an inverse radius [19] p. 29. Maybe squeezing the closed string beyond its 

minimal radius transforms it into a pointletlike (i.e. with nonzero size) energy bubble so that 

the stringy 4D spacetime apparently reexpands into yet another direction/dimension, which 

belongs to the dual 4D timespace.  

The possibility of such a behavior was already hinted at by Lagrange resolvents [1]. But 

underpinnings of the spatial reexpansion needs the new synthetic mathematics to be seen for 

what it really is.  

 Notice that the mapping of the string radius R into its inverse radius1/R depicted on 

the right-hand side (RHS) of the implication (4) involves imaginary potential energy U  

 

   
  

 
                 

 

 
             (5) 

 

of all surrounding center-bound force fields, such as gravitational and Coulomb field, 

for instance. During transition from spacetime to timespace the mapping ties the radius R to 

generic radial potential V(R) of the interaction between the fields and the vibrating string.  

Because the formal mapping of radius into its inverse radius happens under influence of 

the fields within which the string vibrates, the transition that involves transformation of the 

vector basis of the spatial structure of spacetime into that of its dual structure of timespace is 

actually morphing also the squeezed minimal string into an energy bubble. It is not that the 

string becomes an energy bubble, for the string always is the energy bubble too and the 

morphing merely changes its representation. In the native vector base of the spacetime the 

(foreign to the spacetime) energy bubble was only indirectly represented by the string, 

whereas in the native vector base of the timespace the bubble is represented directly. But 

(foreign to the timespace) strings cannot be directly represented in the dual timespace and 

therefore they must morph into energy bubbles.  

At this point an alert reader might rightly object: Since I have shown ([27,28]) that 

potential energy (as a counterpart of work done by the given field) can have three spatial 

components, how come it cannot be directly represented in spacetime whose three regular 

spatial axes are also length-based? Let us say potential energy E of a local interaction has 

three spatial components Ex, Ey, Ez spreading along the spatial axes (X,Y,Z). This means that 

the potential energy E is only decomposed into directions of the axes and so it can be only 

indirectly represented by spatial intervals aligned to the coordinate axes.  

The three spatial energy components mean that the energy E has only been decomposed, 

not really actually composed from certain frequency-based components, in which case it 

could be represented directly therein. The necessity to distinguish between spatial 

composition and mere decomposition along spatial axes has already been emphasized by 

Riemann [29].  

From this new mathematical point of view, vibrating strings depicted in 4D spacetime 

could appear as elongated counterparts of pointletlike “bubblets” when cast in terms of energy 

in 4D timespace. Hence – on a deeper level of inquiry – both vibrating strings and energy 

bubblets might be treated as two dual images of certain stringlets, by analogy to quantum 

duality of waves and particles.  
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This interpretation can also vindicate the idea of supersymmetry. But instead of looking 

for superpartners to particles in the 4D spacetime, one might consider abstract superpartners 

as dual representations of the regular particles, when the latter are recast in the 4D timespace. 

This venue shall be pursued elsewhere.  

Hence all intervals could be consistently measured within each of these two mutually 

dual respective quasi-spatial structures: spacetime and timespace. They are represented in two 

distinct homogeneous coordinates systems or perhaps in a heterogeneous coordinate system 

with two dual vector bases, if you will. However, because these two, essentially logical, 

spatial structures of spacetime and timespace actually refer to exactly the same quasi-

geometric or pangeometric structure, we have to deal with 6 abstract dimensions, the set of 

three of which are always virtual. Here I am using the qualifier „virtual‟ in its plain/basic 

English meaning of the word, not to be confused with that virtual dimension of abstract 

moduli space - see [30] p. 8, for instance. By the same token, however, I must distinguish 

between the geometric space and an abstract spatial or quasi-spatial structure, which is akin to 

set (or to just selection procedure operating on) point-sets.  

Without recognizing its existence, modern pure mathematics is still trying to describe 

multispatial physical reality in terms of the former paradigm of single-space reality. The 

previous paradigm lacks proper words to describe the multispatial reality, and therefore – just 

by trying to be consistent – the former mathematics, often quite inadvertently, made some 

conceptual mistakes. That is why it perpetuated various tacitly concealed scientific 

misconceptions for many centuries while unwittingly allowing misinterpretations of some 

oversimplified experiments [31] and even endorsing fake theorem [14].  

 

 

5.  ALGEBRAIC REPRESENTATIONS OF 4D SPATIAL STRUCTURES 

 

Formal equivalence of the (3+1)D and (1+3)D spatial structures of 4D spacetime and 

4D timespace – in conjunction with furling of the usual three dimensions and unfurling of the 

fourth dimension – apparently can also imply presence of complex, abstract algebraic or 6D 

pangeometric hyperstructure 𝕾 with a heterogeneous complex (3+3)D vector base 

 

  ℝ
      

       ℝ
  ℝℝ

    ℝ
        ℝ  

  {ℝ }   {  }  ℝℝ
     

 
  (6) 

 

which shows that, algebraically, these two 4D dual quasi-spatial structures can be treated also 

as an algebraic 6D structure comprising two dual 3D single spaces. However, one of the 

paired 3D single spaces should be taken as imaginary, because they have distinct and different 

vector bases and yet they are superposed in this setting (hence the 6D structure is additive: ), 

wheras in the 4D spatial structure they are also superimposed upon each other (hence the 

Cartesian product sign:   was used therein).  

Therefore this particular representation is required by their mutual duality in order to 

ensure both: virtual overall orthogonality [32] and solvability of prospective structural 

equations [1] of these two mutually immersed 4D spatial structures. For when a 3D single 

space has dual, the latter should be rendered as being an imaginary 3D space here in the 

hyperstructure 𝕾, because it cannot be directly represented in the vector base associated with 

the primary 3D single space. Actually these two 3D single spaces, namely: the ℝℝ
  (LBS) and 

  
  , which appears as a 3D time-based space (TBS) are just mutually dual, or inverted mirror 

images of each other. Both LBS and TBS represent the same underlying geometric 3D single 

space with two different, mutually dual vector bases though.  
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Cole has also realized that complex 4D spacetime may be represented by 6 real 

coordinates or 8 parameters [33] and so did few other authors [34,35]. Relations existing 

between the 3 spatial directions (i.e. real dimensions), 4 complex dimensions, 6 complex 

coordinates and 8 parameters shall be discussed elsewhere in terms of pangeometry.  

Due to duality of the 3D spaces (LBS and TBS) immersed in the 6D hyperstructure 𝕾, 

reciprocity between space/length and time axes demands that each 3-tuple, i.e. three axes of 

the usual geometrical space and three axes of accumulated time flow, should be interchanged 

[36], [37]. Nevertheless, these axes of time flow in TBS actually refer to accumulated time 

rates rather than to elapsed time intervals [38]. Based upon physical considerations Lanciani 

has already concluded that spacetime should also have 6 distinct dimensions and that the two 

extra dimensions must be of time kind if electrodynamics is to be consistent [39].  

Also Kar considered relativistic time variable as representing a time vector [40] and 

concluded that the 4
th

 coordinate of spacetime of spacetime is contravariant vector in the 

direction of time [41].  

Tifft has investigated 3D temporal space with one radial and two lateral dimensions of 

time, where the radius of the temporal space replaces the standard radius of curvature in 

describing redshifts in spectra taken from stars in distant galaxies seen when photons transfer 

between objects on different timelines [42]. There is no doubt that geometry [of physical 

spaces] must be spatio-temporal [43], but it should also comply with operational and physical 

demands imposed on it by unquestionable physical relationships.  

Since in its apparent 6D image the algebraic hyperstructure 𝕾 (which spans the two 

superimposed 4D spatial structures of spacetime and timespace) can also be viewed as 

comprising two different superposed single 3D vector spaces, namely LBS and TBS, each 

with different and distinct vector base though. As the 6D spatial hypertructure 𝕾 is a 

conglomerate of two distinct  superposed dual 3D single spaces. Yet 𝕾 is also an overlap of 

two superimposed 4D spatial structures of spacetime and timespace.  

Although the two 3D single spaces have also emerged as dual in the 6D notation, they 

add extra attributes (beside duality) to the 6D hyperspatial conglomerate 𝕾, which has two 

distinct and different 3D vector bases. Notice that 4D spacetime and timespace are geometric 

quasi-spatial structures, whereas the algebraic hyperstructure 𝕾 is an object not of geometric 

but of purely algebraic character, even though it could get assigned also a geometric 

interpretation – compare [44,45]. To explore algebraic input to geometry we need 

pangeometry, which is a theoretical umbrella to handle both: purely algebraic hyperstructures 

as well as their components (i.e. quasi-geometric spatial structures).  

Although no 4th dimension can be pairwise orthogonal with the three ones of any of the 

3D single spaces [1], it becomes globally orthogonal via virtual orthogonallity, i.e. by being 

qualified as belonging to the imaginary dual 3D single space wherein those dual dimensions 

are also pairwise orthogonal. Hence the two superposed and mutually dual 3D single spaces 

(each with its own native vector base that are superimposed within 4D structures) resemble 

space of bivectors, which could provide pretty good anology for grasping the idea of abstract 

HD spaces and quasi-geometric spatial structures. Recall that multivectors can also be 

considered as representing mixed rank tensors [46].  

If the set of four distinct versors {e0, e1, e2, e3} is taken as the basis of the regular 4D 

spacetime, then the 6 so-called volutors e0e1, e0e2, e0e3, e1e2, e2e3, e3e1 evidently form 

a 4-basis in the abstract space of bivectors (for the wedge product corresponds to generic 

imaginary vector product of vectors), and so it appears that both bivectors and  the 4D 

spacetime structure is effectively 6 dimensional [47], even though they have only 4D vector 

bases. It is thus a conceptual departure from the original intuitive meaning of geometric 
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dimensionality of regular 3D single spaces. It also severs most direct ties of such abstract 

dimensionality to coordinatization, even though it is formally correct.  

Coordinatization of nD manifold M means assigning a set of n real numbers (n-tuple) to 

each point of the manifold in such a way that to two distinct points of M correspond distinct 

n-tuples [48] p. 26. Furthermore, any concept that is invariant under the group of 

diffeomorphisms can be carried over to the manifold M in a way that does not depend on the 

choice of particular coordinate system for M [48] p. 29.  

However, coordinatization does not always mean also metrization of the underlying 

manifold of the physical space [49], even though in the old conceptual framework of the 

former (yet still “reigning”) paradigm of single-space physical reality we used to assume that 

unique distance between any two points can always be assigned, no matter what the 

dimensionality of the manifold was presumed to be, just because the points – according to the 

single-space reality paradigm – belong to the same underlying point-set space.  

I am not saying that unique distance could not be assigned to arbitrary points located in 

HD structures. However, assigning distances on manifolds spanning HD multispatial 

structures is not as simple as Riemann stipulated, because such structures are hierarchical, not 

flat. Hence higher dimensions must be superimposed, not merely added/superposed.  

Multistaged, hierarchical pangeometric reality evidently demands departure from the 

single-space reality paradigm of former mathematics and based on it physics.  

At this point I owe the reader an explanation. Since we inherited splendid tradition of 

developing geometric algebra (GA) with successful applications of multivectors, why not just 

use it as the foundation for explaining both mathematical and  physical reality. While the GA 

is resourceful in its own right, it cannot be applied to quantum mechanics because GA does 

not distingush between commutativity and noncommutativity.  

For under projective equivalence all information about signs (hence orientations) is lost, 

but the meet and join operations on blades are commutative just as they are on sets [50]. 

Vector/cross and scalar/dot product of vectors/blades are dual [50,51] p. 107, but the rarely 

mentioned Grassmann‟s regressive product (also known as meet), which does pertain to both 

duality and to scalar product, also refers to the point of intersection of the pure vectors 

(blades/intervals) [50]. I shall show in a subsequent paper that this is just yet another 

indication (or an abstract mathematical hint, if you will) that algebraic operations actually 

point to presence of a certain abstract, quasi-geometric multispatial structure.  

Disregarding biblical warning against pouring new wine into old wineskins, the GA 

tries to describe multispatial physical reality without mentioning multispatiality by name and 

thus also without words needed to describe all facets of the actual physical reality. Despite its 

ingenuity GA operations are restricted to the former paradigm of single-space reality. GA did 

not ask the question: what is the underlying actual reality it operates on?  

It is easy to see that the 6D pangeometric hyperstructure 𝕾 must come in two flavors 

too. While the eq. (6) shows hyperspatial expansion of the primary 3D single space that is 

equipped with length-based vector base into its dual 3D single space (equipped with a time-

based vector base), reverse expansion can also be performed in the following way:  

 

    
     ℝ

        
    

    ℝ 
         ℝ

  {  }   {ℝ }    
   ℝℝ

 
 (7) 

 

which is complex structure that is formally dual to that depicted by the chain of eqs. (6).  

Notice that the hyperstructure 𝕾 standing on the right-hand side (RHS) of the chains of 

eqs. (6) and (7) – which was asumed as being a 4D quasi-spatial geometric structure, because 

it emerged from equivalence of two 4D spatial structures – is effectively also 6D algebraic 
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structure comprising two dual 3D single spaces, each with its own native vector base. The 

apparent contradiction that two dual 4D spatial structures can be mapped onto a 6D structure 

is solved by unfurling of each of the fourth dimensions of the 4D structures. 

The obvious duality of eqs. (6) and (7) also suggests that the 4D world is spherical with 

respect to the 3 regular spatial axes of the usual length-based 3D single space, but it also 

appears to be hyperboloidal with respect to the 1D elapsed time axis. This remark agrees with 

analogous conclusion reached by Kar and Dutta in [52].  

Moreover, as Törnebohm already pointed out – if clocks and measuring rods behave 

(special-)relativistically by adjusting themselves to a field [even if the field is combined 

general-relativistic (i.e. radial gravitational) field and a special-relativistic field due to an 

artificial velocity], then both space and time in the combined spacetime structure are field 

concepts [53]. In such a case their underlying representation should be similar too.  

While duality suggests that these 3D single spaces can be overlaid upon each other, 

which concurs with them being mutually superimposed [1], their formal equivalence – as 

suggested by the chain of eqs. (6) and (7) – is indicative of some hyperspatial connection 

whose presence (to the best of my knowledge) has never been explored, neither in linear 

algebra nor in geometries. Edward Kasner has already realized the need for 6D algebraic 

spatial structure to encapsulate/embed abstract 5D geometric structures, such as the one 

proposed in Kaluza-Klein theory [54]. However, the chains of eqs. (6) and (7) indicate that 

the 6D algebraic structure must not be real, but complex, if the operational procedure that 

corresponds to the structure is to be solvable, according to Abel and Galois [1].  

When mutual (hence formally equivalent) duality of two 3D single geometric spaces 

accomodates two flavors of an algebraic hyperstructure 𝕾 spanning two 4D quasi-spatial 

structures, namely (3+1)D and (1+3)D ones, this suggests that a transition exists between 

these two, which seem to belong to a closed, intertwined hyperspatial system. For these two 

flavors are formally quite indistinguishable. From this point of view, the unfurling of 1D 

function/variable (that is cast in a foreign vector base) transforms it into its 3D dual 

counterpart, which is cast in its native vector basis. The process of dimensional unfurling 

could be viewed as dimensional reexpansion, if the corresponding to it process of furling is 

perceived as a dimensional reduction associated with dimensional contraction.  

While the process of spatial contraction has no precedent in mathematics, its driving of 

dimensional reduction of one spatial structure and simultaneous reexpansion of its dual spatial 

structure resembles that curious behavior of Lagrange resolvents [1]. Therefore it should be 

handled by a pangeometry of multispatial hyperspaces. Its presence in natural phenomena is 

also indicated by spatial embeddings of some physical spaces. 

  

 

6.  MULTIDIMENSIONAL FLOW OF TIME VERSUS SPACE OF TIME 

 

Some authors claim that multidimensional time implies existence of a space of time 

[55]. Nevertheless, mathematically it is not really admissible statement. The eq. (7) only 

shows that presence of a certain abstract multispatial hyperspace allows for fairly similar 

(though not really identical) dual representations of operational procedures (or processes such 

as accumulations) and corresponding to them generic quasi-geometric structures. In the sense, 

there seems to exist a geometric (or quasi-spatial) accumulation of rates of time flow [38], but 

no space of elapsed time. These topics shall be discussed more elsewhere.  

The operational approach to exploration of issues of dimensionality and spatiality in the 

present note sprouted from ideas developed and proven by Abel, Galois and Lagrange [1].  
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Although proposals of multidimensional time flow were very valuable contributions, 

which did inspire much research, their mathematical expressions, usually made in terms of the 

elapsed-time variable t, are unacceptable, for models of multidimensional elapsed time must 

not yield more elapsing time than physical clocks actually measure. Time is superimposed on 

all the regular spatial dimensions [1]. Accumulation of elapsing time actually requires 

different quasi-geometric abstract structure of multispatial hyperspace (MH). Besides, even 

the 4D spacetime is an abstract spatial structure, not just space [1].  

We should not merely extend the old notion of dimensionality of 3D simple spaces onto 

HD spatial structures without ensuring that the structures are operationally sound. Although 

one can always write structural equations in n coordinates by extension of the three 

coordinates, this act does not make such equations conceptually correct even if their values 

are admissible in most practical approximations. Conceptual validity of any formal 

expression/representation is indispensable for making meaningful inferences.  

Any new theory of multidimensional time in 6D spacetime must be complementary to 

the ordinary 4-dimensional relativity, unifying new concepts and capable of explaining 

experimentally well-established facts [56]. Cole‟s approach with parallel time vectors in a 

frame is not sufficient to reproduce R
4
 from R

6
, however [57]. Although many of Cole‟s 

arguments are on target [58,59], his approach to multidimensionality of [elapsed] time creates 

problems [60]. Also his extension of Schwarzschild metric to 6 dimensions in terms of 

elapsed time gives wrong estimate for gravitating mass of ordinary matter [61].  Some 

authors argued that no present facts contradict multidimensionality of time [62], but such a 

statement could never be decisive because it is based upon negation of innumerable 

possibilities. While the idea of multidimensionality of time flow is exciting, its formal 

implementation in the former mathematics failed.  

A 6D spacetime with signature (-1,1,1,1,1,1) and two extra dimensions compactified on 

a manifold with a radius R ~ 1mm was proposed in [63], but it was deemed unrealistic [64]. 

Operationally viable dimensional furling supersedes compactification.  

Nonetheless, since events could be recorded by multiple clocks in terms of [elapsing] 

time [65], the idea of multidimensional accumulation of time (rather than elapsing time) 

should be explored, for multidimensionality of regular elapsing time is rather untenable. 

Previous mathematical approaches to multidimensionality within the former single-space 

reality paradigm failed to address the conceptual issues that crop up whenever nontrivial 

theoretical questions emerged. Yet when considered from the alternative standpoint of 

possibly multispatial structure of the physical reality we live in, formerly unresolved or 

unreconciled conceptual issues are qualitatively explainable. Hence also a conceptually new 

quantitative approach matching the successful qualitative one should be developed. However, 

the new approach should not be based upon preconceived ideas of what the mathematical 

underpinnings of the actual physical reality should look like, but rather on hints supplied by 

incontrovertible but formerly unanticipated experimental results. Let the Nature decide which 

mathematical concepts yield the best model of physical reality.  

Traditionally, mathematics was used to reduce apparently unanswerable problems to 

simpler ones. While useful in approximations, the reductionist approach sets aside most 

conceptual issues, however. The example of Lagrange resolvents apparently growing more 

complicated when the number of dimensions exceeds four demonstrates that the overly 

simplistic reductionism has limits [1]. What seems more complicated is perhaps just an 

indication of much greater complexity of the concept of dimension. Mathematics should not 

keep on stubbornly ignoring the mathematical results that do not line up along its traditional 

line of thought, while avoiding inconvenient conceptual issues.  
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 Therefore multispatial approach should be tried, preferably with the use of the new 

synthetic mathematics that takes cues from hints of certain unbiased yet formerly quite 

unexpected experimental results, provided the syntheses avoid making any arbitrary 

existential postulates. For most existential postulates tend to create an artificial reality. We 

need new mathematical concepts which can model the actual physical reality.  

Admittedly some aficionados of the idea of multidimensional time flow have already 

scored several points in its defense and so did also their critics in their attempts to detract the 

idea. With few exceptions both presented well-rounded arguments. However, because of its 

adherence to the old paradigm of single-space reality, former mathematics appears incapable 

to address the issues of higher dimensions in an operationally responsible way. The single-

space reality paradigm derailed many valid mathematical inferences.  

The current mathematically-averse arbitrary paradigm of single-space reality cannot 

support multidimensional time flow. It has to be upgraded to a new paradigm that would 

admit presence of multispatial hyperspace with mathematically legitimate (i.e. at least 

operationally complete) structural rules of composition of such multispatial hyperspaces, 

which the former mathematics lacks. Hence again, mathematics needs an overarching 

umbrella of a new synthetic mathematics with pangeometry to achieve all that.  

Yet embeddings of higher-dimensional spatial structures affirm the apparent need for 

the presence of multidimensional accumulation of time as well as hierarchically arranged 

realistic dimensions. Many celebrated mathematicians (such as Poincaré and Hilbert, to name 

just a few) disengaged mathematics from its former role as the queen of all exact sciences and 

apparently channeled mathematical explorations to what they could handle with ease. This 

resulted in arbitrary mathematical endeavors tailored to the whims of their creators, with 

almost statutory disregard for everything (even for some rigorously proven past mathematical 

results) that did not quite fit their arbitrary preconceived ideas about the actually existing 

physical reality. Mathematics should stop dictating what the Nature is supposed to look like 

and start investigating its actual modes of operation instead.   

While abstract investigations are commendable even if these do not correspond yet to 

any known reality, disrespect for certain inconvenient mathematical truths (i.e. proven 

theorems) and sidelining or suppression of inconvenient yet mathematically legitimate 

alternatives makes such investigations pointless. These and other evasive trends made former 

mathematics unable to explain formerly unanticipated experimental results whose explanation 

required modification of the former single-space reality paradigm [27].  

 

 

7.  EMBEDDINGS OF HIGHER-DIMENSIONAL SPATIAL STRUCTURES 

 

Thorne concluded that 6D hyperspace is needed to embed 3D curved space [66] and 

Edward Kasner has already found that proper embedding of 4D or 5D subspaces actually 

requires 6D algebraic space, which looks geometrically like a pair of 3D single spaces, based 

on symmetry and the sort of reasoning that aims at establishing both pairwise as well as 

global orthogonality of all abstract dimensions [67] p.104. He also showed that 4D Einstein 

manifold cannot be embedded within a 5D flat space [54] and that certain Einstein solutions 

can be immersed only in an abstract 7D flat space [67] p.105. He also demonstrated that solar 

gravitational field can only be properly embedded in an abstract nD structure where n falls in 

the range between 5 and 10 (5n10) dimensions [68].  

If embedding of the 5D Kaluza-Klein spacetime requires presence of certain two 3D 

single geometric spaces [67] that should act in unison as a tandem yet also independently of 
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each other (i.e. in parallel but as a single pair too), the embedding might suggests a dual 

„entanglement‟ of a pair of two distinct 3D images of the same 6D spatial structure. Hence 

dimensionality is not just an intrinsic feature of the underlying space itself, but seems to be 

ruled also by certain (pangeometric) symmetries external to the given space.  

When investigating possible embedding functions, it was noticed that line elements in 

both Kasner embedding signature (++----) and Fronsdal embedding signature (+-----) there are 

compound dz elements, not just simple dx [69]. This is analogous to presence of nonradial 

components [27], indicating that abstract higher-dimensional quasi-geometric spatial 

structures can comprise several overlapped/superimposed 3D single spaces.  

From traditional geometric standpoint one could argue in favor of restricting generic 

dimensionality to whatever can conform to the often implicit common sense requirement that 

if dimensions pertain to the spaces in which objects should be constructed, then they should 

somehow be visible too [70] or at least be unambiguously representable.  

One of such arguments was offered by Möbius, who wrote that it seems remarkable that 

solid figures can have equality and similarity [relations] without having coincidence, while 

always, on the contrary, with figures in a plane or systems of points on a [straight] line 

equality and similarity are bound with coincidence; perhaps the reason for this may be that 

beyond 3D single space there is no other, no [geometric] 4D space [71]. In other words: he 

suggested that perhaps there is no 4D geometric space that looks just like the usual 3D single 

space, even though abstract quasi-geometric 4D spatial structures can exist, i.e. they can be 

unambiguously constructed.  

Gauss apparently regarded generalizations of symmetry and congruence to geometry of 

n>3 dimensions not inconsistent. Yet he did not consider the three-dimensionality of space as 

an inherent quality of space, but as specific peculiarity of the human mind [72] p. 177.  

Maybe generalized dimension is not a notion inherent to space. For one can see many quite 

independently varying magnitudes, i.e. abstract generic dimensions, without the necessity of 

any direct representation in a single quasi-geometric space, but clearly present in the actual 

physical reality we live in.  

As it was defined in Euclidean geometry, dimensionality is not an intrinsic attribute of 

space but a feature of its abstract representation. For dimensionality of a given space is not 

really unique feature of the space, but depends upon particular choice of geometric entity for 

its primary/generating element [73]. Henri Cartan pointed out that even a single point with a 

plane passing through it can be considered as 5D space [74]. Also cube can be viewed as a 

square in a square and a hypercube as just a cube in a cube [75] p. 33.  

Spatial perceptions are certainly conventional and so are geometric descriptions. But the 

conventionality does not mean that the notions of dimensionality and spatiality can be quite 

arbitrarily defined, however. When generic potential function V(r) = 1/r, for instance, is 

considered in pure mathematics, it does not seem to be restricted with exception of r  0. But 

when the same function is viewed as representing (the root of) potential energy of an 

interacting radial center-bound force field, it becomes clear that the function V(r) must be 

balanced by work done by the field on that interaction, or energy conservation law would be 

violated. Mathematics should be integrated with physics to avoid misconceptions.  

Since abstract geometric dimensionality refers directly to formal representations of all 

properly constructed geometric objects (immersed in a given space), then perhaps we should 

try to identify first all possible classes of geometric objects (or most of them) with the 

algebraic structures they belong to.  

If this point of view is accepted, then the nD hyperobject (with n > 3) that was often 

called „space‟ is itself an infinite-dimensional generic abstract structure, provided this 
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equating it with fact space (whose dimensionality is surely unrestricted a priori) would not 

create any conceptual problems or perhaps even cognitive conflicts.  

By proper construction I mean relying only on rigorously proven theorems while 

respecting all applicable algebraic (and operational, in general) rules as well as intrinsic 

geometric restrictions. In the sense any arbitrary declarative statements and/or existential 

postulates (regardless of whether they are stated explicitly or just disguised as definitions) do 

not really constitute proper geometric construction.  

 

 

8.  PHYSICAL ORIGINS OF THE IDEA OF TIME AS AN EXTRA DIMENSION   

 

The idea of time as fourth dimension was put into print by d‟Alembert and Lagrange 

[76]. Also Poincaré observed that everything happens as if time were a fourth dimension of 

space [77] p. 23. That remark was upgraded by Minkowski to World Postulate, which asserts 

that only four-dimensional world in space and time is given by phenomena [78].  

But the 4D Minkowski space is an affine space for it has no origin [79]. Since affine 

space is not a vector space, no point is preferred and thus its points can neither be added nor 

multiplied by scalars [80]. In affine geometry points, not vectors, are transformed [81]. Yet 

some authors still defined an abstract n-dimensional affine Minkowski space M with an 

associated vector space V of translations and future timelike cone C  M [82], even though 

the Minkowski space is just a visualization diagram convenient for plotting spacetime events 

[83].  

Minkowski space is important for visualization of special theory of relativity (STR), for 

within the framework of unified trigonometry Lorentz transformations (LT) appear as just 

rotations in the space [84]. But it is less so for the general theory of relativity (GTR) where 

each freely falling observer in Minkowski spacetime has is own (local) notion of space and 

time [85,86]. Moreover, pure gravity does not really work at the classical level, whereas 

supergravity in 11D, for instance, seems to work only if the spacetime part of the manifold 

actually is anti-de-Sitter space, not Minkowski space [87]. While surely helpful for 

visualization of events happening in spacetime, the Minkowski space is not a substitute for 

mathematical spaces and/or abstract spatial structures.  

 

 

9.  GEOMETRY IS FACTUAL BUT ITS FORMALISM IS CONVENTIONAL  

 

Dimensionality of geometric spaces is restricted by the need for orthogonality and 

extended algebraic dimensionality of quasi-spatial abstract structures is contingent upon the 

requirement of constructability, which – in its most basic form – demands that their proper 

objects be operational (i.e. must not be unsolvable in principle). In the sense even though new 

synthetic geometry is driven by experimental facts, its formal representations adhere to 

conventions whose roots originated in the paradigms, which had already been espoused by the 

time the given representation was formulated. For paradigms lag behind the newest ideas that 

have been revealed by the tools the geometry had made available.  

In a continuous nD manifold its continuity and dimensionality do not yet allow us to 

infer any metrical properties [which are often assumed] as properties to be ascertained by 

measurement; all that is known is that every point of the manifold is characterized  by n 

numbers and that to closely adjacent points closely adjacent numbers correspond [72] p. 154. 
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Although this kind of opinion is shared by many physicists, it is actually a very evasive 

statement that can be true only when one defines vector as an arbitrary n-tuple.  

Experiments can supply hints as to what role a vector (or dimension in general) can 

play, but they cannot decide how a notion could be represented. Formal representation likely 

depends on one‟s expertise as well as one‟s depth of inquiry into the phenomena. Hence it 

must rely on the paradigms espoused by the authors of the given mathematical formalism, 

even when the guiding paradigms are not always explicitly mentioned.  

Great past achievements may still have some inspirational value today, but they were 

great only by their contemporary standards. The Grassmann‟s ideas inspired geometers not 

only to pursue new ways to understand dimensionality and thus spaces in general, but they 

also tacitly discouraged their prospective attempts to tackle most inconvenient issues of 

geometry. Such issues were often raised by either actual- or just thought-experiments.  

There are many unexplained curious experiments in exact sciences as well as thought 

experiments in mathematical and physical theories, of course. The most relevant issue 

pertaining to the realistic concept of geometric dimensionality is the unanticipated string 

duality that emerged in string theories [18]. When one tries to shrink a closed string by 

squeezing its radius beyond its minimal spatial period, the string does not crash, but the space 

itself seemingly reexpands in yet another dimension/direction that is quite different from all 

the regular spatial directions [19] p. 29 while exchanging its original radius with something 

that looks to me like inversed radius (or generic potential of the underlying fields interacting 

with the vibrating string) cast in a dual linear vector space with different and distinct basis. If 

my assessment of the issue is correct, this is exactly an example of what I call „spatial 

inversion‟, which the curious behavior of Lagrange resolvents already hinted at [1]. The 

abstract spatial inversion, however, calls for replacement of the former paradigm of single-

space reality with that of a certain multispatial hyperspace.  

Yet in order to even comprehend (not to mention understand) the whole procedure of 

spatial inversion one has to revamp the abstract notion of dimensionality first, and then to 

fathom how the entire process of inverting spaces could be accomplished. For the process to 

work I had envisioned an abstract hyperspatial structure that would correspond to the 

procedure designed to implement the process, whose presence was tentatively proposed in 

[38] and then briefly outlined also in [24,25]. Also a new operationally viable (as opposed to 

merely philosophical) approach to understanding the operational meaning of infinity and 

singularity is needed. These topics have been briefly discussed in [88,89].  

Since vectors are indeed indispensable part of the physical reality we live in, even 

purely algebraic treatment of them (as just n-tuples of numbers) should conform to their 

intended usage in physics too. However, any physical theory remains just an empty shell until 

we have found its reasonable physical interpretation [90] and so is any mathematical theory 

disconnected from the physical reality. Existential postulates can misdefine some aspects of 

the reality, which is factual, even if its particular formulation is conventional.   

Although many authors would agree with Poincaré that all geometrical theories are 

conventional and that their axioms are only definitions in disguise [11] p. 50, [12] p. 293, 

some authors are rather uncomfortable with the fact that the, assigned by a convention, 

axioms could tacitly (mis-)define the abstract (and perhaps also the effective operational) 

reality of the chosen geometry in defiance of the actual physical reality [91].  

According to Brouwer the expression of a mathematical fact is conventional, but the 

truth that the fact contains forces itself on our minds apart from any convention [92]. 

Therefore conventions must not be arbitrary, but should reflect defining characteristics of the 

actual physical reality.  
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Notice that Poincaré‟s conventionalism is just a definitionary conventionalism [93]. 

Consequently other authors considered space as just a scaffolding and thus quite arbitrary a 

construct [94].  

Conventionality of representing space does not mean that we should bend the truth 

about facts to give them a more realistic appearance, but rather that perhaps mathematics 

should strive to be true to the reality it attempts to describe whether it is physical or just 

abstract mathematical one. By „true to reality‟ mathematics I mean one that is not devised just 

with ease of proofs in mind, but such that could synthesize its fundamental concepts from 

hints supplied by the curious experimental data which we neither expected nor even 

particularly liked. Poincaré – by divorcing space from its material content, geometry from 

physics – placed thus space and its geometry beyond the control of experiment [95] p.55. Yet 

Riemann, for instance, went in quite opposite but rather extreme direction.  

 

  

10.  RIEMANN’S HIGHER DIMENSIONS AS GEOMETRIC EXTENSIONS  

 

From the – essentially algebraic – Grassmannian point of view, which asserts that space 

is only a special case of threefold extensive single linearlike magnitude, Riemann concluded 

that properties of geometry cannot be deduced from magnitude-idaes, but that those 

peculiarities through which generic geometric space distinguishes itself from other thinkable 

threefold extended magnitudes can be obtained only from experience [96].  

While Riemann rejected the opinion that the metrical structure of space is fixed and thus 

not inherently independent of the physical phenomena for which it serves as just a 

background, he asserts that space in itself is nothing more than a 3D manifold devoid of all 

form and that it acquires a definite form only through the advent of a material content filling it 

and thus determining its metric relations [95] p. 348. This point of view allows him to just 

disregard any restrictions on dimensionality, because there was allegedly no spatial structure 

to restrict, and if the space is an abstract container that is actualized by filling it with matter, 

the only limitation would be the amount of matter available.  

This view not only opposes artisans like Poincaré, who tried to create geometry and thus 

reinvent the already existing reality in his own – mathematically reductionist – conceptual 

image, but it also effectively denies one of the main reasons for mathematics to exist: namely 

to match structures to procedures or vice versa. Riemann elevated thus former mathematics‟ 

inability to grasp mathematical underpinnings of physical reality to a virtue of deference to 

physics, and thus subjugated mathematics to physical sciences. Yet just as matter, along with 

geometric structures, codefines (assumedd as empty) space so also spatial relationships 

codefine (along with operational procedures) matter in all its forms. Yet if the space is not 

empty after all, but is filled with somewhat dormant energy, then prequantum (and 

prerelativistic) distinction between space and energy/matter loses its previous rationale. 

Physics can guide pure-mathematical abstractions in conceptually meaningful directions, but 

it is  mathematics what makes physics truly exact science.  

For realists like Helmholtz the problem of space relied on the fact of existence of free 

moving bodies (as hinted by inferences abstracted from common experiences), but for 

experiential surrealists like Riemann even the [evident in common experiences] existence of 

freely moving [material] bodies was apparently just a hypothesis to be proved [97]. The 

Riemann‟s definition of [nonexistent] space did not solve the space problem [98].  

To construct his geometry, however, Riemann had to throw overboard few geometric 

axioms, including the one which asserts that only one line can pass through two [distinct] 
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points [11]. Yet despite this [literally patchy] character of Riemannian geometry, most 

physicists preferred it over the spacetime which – in its traditional interpretation – has 

indefinite metric [99], for Riemannian space can be seen as just a set of local tangent flat 

spaces [100]. The consequence of indefinite metrics of spacetime is that for some nonnull 

vectors their squares can be, nevertheless, zero [101], which is definitely undesirable a 

feature. I would say that indefinite metrics calls for disambiguation, but certainly not for 

evasiveness or disregarding the issues that former mathematics could not grasp or tackle.  

Riemann has introduced in [96] nonhomogeneous spaces in which distance between two 

points in infinitely small surroundings is defined by an arbitrary (to a certain degree) 

differential form [102]. Riemannian space is thus a manifold similar to Euclidean space (and 

even to some noneuclidean spaces [103,104]), in which the notion of distance is conserved, 

but they lack homogeneity [105,106]. He did not resolve the issue with indefinite metric, but 

evaded it by postulating existence of nD manifolds just by analogy to the 3D space. Yet he 

gave not viable proof that all properties can be carried over from the 3D single space onto his 

(n>3)D structures. Although the former higher-dimensional manifolds are suitable for most 

approximations, from a conceptual point of view they are unconceded failure of the former 

artlike mathematics that tacitly ignored proven results of Abel, Galois and Lagrange, among 

others. While approximations (and reductionism in general) are helpful for some estimates, 

drawing reliable inferences requires conceptually adequate (i.e. constructible and solvable, at 

least in principle) formal representations.  

 

 

11.  ODDITIES WHEN n > 4 DIMENSIONS ARE CAST IN A SINGLE-SPACE  

  

In spaces of higher dimensions functions of bounded variation may not have some of 

the properties they enjoy in lower dimensions [107], which often raises very annoying 

problems nonexistent in lower dimensions [108]. Also equations for odd and even n (in nD 

spaces with n>4 dimensions) are different [109].  

Extension of integrability to dimensions higher than 3
rd

 is also a problem because of 

emerging nonlocality issues, which can arise when dealing with higher-rank connections 

[110]. Also classification of codimension 3 singularities of vector fields is not possible for 

dimensions greater than 5
th

 [111].  

On the other hand, the global existence theorem proved in more than 5 dimensions 

[112] is not valid for 3 dimensions [113]. These facts indicate that neither an expansion nor 

reduction of dimensionality preserves all features of objects immersed in the spaces. These 

facts defy inductive approach to dimensionality cherished in former mathematics.  

Difficulty arises also when one considers symmetry of [combnatorial] dimension 

structure – the emphasis on orthogonal group as it were [114]. For in a 3D single space the 

whole bivector evidently equals to a system of n(n-1) bivectors, but this is not true in 4D 

space [115] p.11. Also simple [arbitrary] extension of 4D spacetime to 5D [single] space 

could create some difficult problems [116].  

For length and area, a central fact is that the value of the length of a curve or the area of 

a surface, as given by Lebesgue theory, is at least as great as that given by the classical 

formula, whenever the latter has actual meaning. But this is now found not to be valid in 

[formerly defined] higher dimensions [117], yet it holds for some other mappings [118].  

Four is the unique dimension where a local differential equation that accounts for the 

radiation reaction and admitting a consistent mass-renormalization (i.e. the Dirac-Lorentz 

equation) exists [119]. In odd dimensions Huygens principle also does not hold, and as a 
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result, the radiation reaction force depends on the whole past history of a charge (known as 

radiative tail). Yet the divergence in the tail integral can be effectively removed by the mass 

renormalization only in the 2+1 theory [119]. In higher dimensions even classical theory of 

radiating point charges is not fully consistent [119]. This is just the tip of the proverbial 

iceberg of problems caused by the former, arbitrary approach to dimensions.  

While abstract extensions from spaces of (1+2)D to (1+3)D are fairly simple [120], 

constructing higher-dimensional spatial structures was formerly done simply by analogy to 

3D spaces. Theorems about hypersphere in 4D were also created just by analogy [121]. 

Poincaré claimed that mathematicians do not really deal in objects, but in relations among 

objects and so they are free to replace some objects with others so long as all the relations 

between them remain intact. Content to them is irrelevant – they are interested in form only 

[122] p. 114. But he discounted the possibility of discovery of new relations between objects 

and the prospect that the new relations may not be transferable to other objects.  

Yet if a form is to be realistic – even if conventionally defined – it has to refer to a 

certain constructible structure, which in turn demands that it should also be operationally 

constrained by a corresponding to it viable procedure. To be viable, the procedure must not be 

insolvable in principle, however. For if a structure corresponds to an insolvable procedure, the 

structure cannot be always quite unambiguously constructed. This means that, in general, such 

unconstructible structure cannot exist in the actual physical reality.  

It is evident that the former arbitrary approach to defining dimensions by analogy (or by 

induction/recursion) – [77] pp. 29, 31; [123] p. 44 – failed to ensure that indispensable generic 

attributes of 3D single spaces (such as no-nonsense orthogonality of dimensions) can always 

be carried over intact also onto higher-dimensional quasi-geometric spatial structures. But the 

former mathematics that relied only on transformations treated as just mappings of points 

from one set into/onto another set cannot ascertain transitions of other attributes of the spaces 

or spatial structures.  

Yet existence of abstract spatial structures, such as the aforesaid 6D pangeometric 

hyperstructure 𝕾, requires also new kind of transformations that should ensure transition 

between its mutually dual 3D spatial structures. Such a transition does not only transform 

point sets, but it should also allow passage from representing geometric facts in one of the 4D 

spatial structures that encapsulate the 3D single spaces to its dual 4D structure and vice versa. 

That is why the comprehensive transition can be called spatial morphing [1].  

 

 

12.  SPATIAL MORPHING AS CONCURRENT REDUCTION AND EXPANSION  

 

Transition of vector bases underlies morphing of one of these 3D single spaces into the 

other and vice versa. The 3D morphing proceeds by furling one and unfurling other 3D single 

space within 4D spatial structure, which is accomplishhed via spatial reduction of one of the 

3D single spaces and corresponding to it spatial expansion of its dual 3D single space. This 

3D spatial morphing is thus simultaneous reduction of one single space and reexpansion of its 

associated dual 3D single space. During spatial morphing the two inverse processess proceed 

in tandem. Hence the 3D spatial morphing must somehow relate the primary 3D vector basis 

to its dual 3D vector basis.  

The 4D spatial morphing is a process that proceeds on the higher, 4D pangeometric 

level, but it also involves the two 3D single spaces (namely the primary one and its dual) 

which are immersed within each of the two 4D dual spatial structures of spacetime and 

timespace, by transforming also each of the 4D structures into the other. The process of 
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furling or unfurling of one of the 3D single spaces also causes the encompassing them 4D 

spatial structures to be morphed into their dual counterparts.  

When viewed as a process, the morphing proceeds as a reduction of one 4D spatial 

structure via furling of its primary 3D single space, with concurrent expanding of its dual 3D 

single space within its dual 4D spatial structure via (presumably almost) simultaneous 

unfurling of the other of its 3D single spaces. If it is considered as a switch between the two 

4D structures, their morphing appears as transition between their heterogenous bases.  

While offering various abstract definitions of dimensions of spaces, Henri Cartan 

remarked that it is very difficult to demonstrate the impossibility of homeomorphism of two 

manifolds of different dimensions each [124,125] even though it seems impossible to 

establish unambiguous and continuous correspondence between points of two sets of different 

dimensions [126]. Besides, upon just dimensional reduction, if it would be not accompanied 

by dimensional expansion of its overlapping dual structure, a field theory may exhibit 

previously unexpected or hidden symmetries [127]. The morphing is thus a double 

transformation with furling of one 3D space and unfurling of its dual 3D space.  

Yet this new dimensional reduction differs from the Kaluza-Klein compactification of 

dimensions. By analogy to bivectors, the (1+3)D = 4D base versors {r0, r1, r2, r3} of the 4D 

spacetime 𝕽4
 transform into base versors {τ0, τ1, τ2, τ3} of its dual (3+1)D = 4D timespace 𝕿4

 

in such a way that 3-vectors of one spatial structure transform into the extension (i.e. 4
th

) 

component of the other structure and vice versa (⥦). The transformations mapp thus both: 

their versor-bases as well as formal representations of shapes of the objects being transformed 

and therefore morph also the spaces in which the objects are immersed. The transformation of 

the base versors themselves of the 4D structures proceeds as follows:  

 

 {        } ⥦ {  }         {  } ⥦ {        }                 (8) 

 

which ensures that (properly constructed) geometric objects immersed in both 4D spatial 

structures (spacetime and timespace) always remain fully operational and therefore their 

structural equations are solvable, at least in principle. In reference to physical space these 4-

vectors are sometimes called paravectors [128]. Notice that the schema (8), which also depicts 

furling and unfurling of coordinate versors, is analogous to the transformation (2).  

Operationally viable structures existing in actual physical space shall provide patterns 

also for abstract mathematical spaces. For existence of all spatial structures is contingent upon 

feasibility of the operations to be performed on them. Merely postulating existence of abstract 

spaces without matching their structures to proper operational procedures does not really 

make them algebraically operational or geometrically constructible.  

By stating that dimension of a vector space V is the maximum number of independent 

elements in V [129], pure mathematics trivialized the concepts of both: dimensionality and 

spatiality. Perhaps we should not decide what dimension “is” before we realize how it can 

coexist in the Nature with the other concepts intertwined with it or related to it.  

If treated as science, mathematical concepts should be discovered rather than just 

postulated. The discovery should include its notions, structures and their operational 

procedures. The former artlike mathematics breeds nonsenses perpetuated for centuries [14], 

[31] for example, which – when applied to physical sciences – sometimes created cognitive 

conflicts and/or confusion. It adversely affected both students and researchers. Mathematics 

should be treated as fundamental science, not as just an abstract game of arbitrary thoughts 

unconstrained by any structural or operational prerequisites.  
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Similarly the statement: that dimension of a linear vector space is the number of its base 

vectors [130-132] – when generalized to higher dimensions – ignores the fact that vector-

bases belong to representations of spatial structures not to spaces. Not to mention that there 

can be many distinct bases for representing the same spatial structure. For various vector-

bases can also suggest different dimensionality [73]. I have already proposed development of 

a computer-aided knowledge extracting system (CAKES) to help sorting out mathematical 

intricacies for both students and researchers [25].  

The abstract algebraic 6D hyperstructure 𝕾, which can also be represented as being 

parametrized by 6 versors spanning two distinct bases, would require some multistaged (i.e. 

hierarchically organized) operations in order for it to yield conceptually meaningful results. 

This is no longer domain of any geometry, but pangeometry.  

Since vector space equipped with outer product is no longer linear [50], its spatial 

structures with morphing vector-bases should not be treated as just linear vector spaces.   

Given the morphing schema (8) and the eqs. (3) one could tentatively envison an 

operational equation to aptly depict a transition between the primary and its dual vector base. 

Such a transition should also be described in terms of differentials, of course.  

Although gradient of a point function is a tensor, it can also act as a covariant vector 

[133]. Having the two 4D quasi-spatial structures of spacetime and timespace, each with its 

own native vector base, we need a certain compound 4D gradient function that could deal 

with their heterogeneous vector basis.  

Let us define symbolically (on Grassmannian terms) a new heterogeneous 4D nabla 

operator ⍔ as an abstract complex (rather than real) primary extension of the regular 3D 

nabla operator  via a certain new 1D curved (or imensionally furled) nabla operator ⍫:  

 

⍔   ⍫                  (9) 

 

where the curved nabla ⍫ is imaginary operator with respect to the regular nabla operator , 

for ⍫ cannot be directly represented in terms of the primary vector basis of the space on 

which the regular 3D nabla operator  is defined. For no any other (than those three already 

present in the regular 3D nabla operator) distinct fourth component could ever be directly 

orthogonal to all the other three directional components of the 3D nabla operator.  

The furled 1D nabla operator ⍫ has thus the effect of reducing formal dimensional 

representation from 3D to 1D. It supports thus furling of coordinates. The regular 3D nabla 

operator  resembles thus the effect of unfurling of the coordinates by expanding formal 

representation of an object corresponding to a transition function from 1D to 3D formal 

representation of the given object in a single 3D space.  

Before investigating possible consequences of the 4D operator it has to be ascertained 

that the proposed here relation (9) is operationally sound. This shall be done elsewhere.  

 

 

13.  CONCLUSIONS   

 

Dimensionality (and spatiality) is restricted by both structural and the corresponding to 

them operational symmetries. Abstract spatial structures endowed with higher than four 

dimensions (i.e. independently varying magnitudes) require hierarchically arranged 

operational procedures in order to meaningfully operate on them. The hierarchy of such 

procedures implies necessary presence of corresponding to it hierarchical structure.  
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This fact suggests the need for a certain abstract multispatial hyperspace to be deployed 

within the mathematical framework that underlies the physical reality we live in.  

Consequently thus, due to inherent insolvability of general polynomial equations of 

degree higher than four, nontrivial cases involving dimensions higher than four require certain 

abstract spatial structures which would span (or perhaps should be cast) over multiple linked 

three-dimensional single geometric spaces in order for them to be quite unambiguously 

solvable, at least in principle. Hence multidimensionality with n>4 absolutely unique abstract 

dimensions requires multispatiality for it to be implemented.  

The multispatiality is consistent with mathematically necessary presence of two dual 

quasi-geometric abstract spatial structures of (3+1)D and (1+3)D kind, one of which can be 

identified with 4D spacetime, whereas the other with its dual 4D timespace.  

It appears that duality of the two abstract spatial structures of 4D spacetime and 4D 

timespace implies presence of a complex, 6D algebraic structure that spans them both. This 

feature suggest the need for an overarching pangeometry to handle these structures.  

Due to the operational – and corresponding to them structural – restrictions, presence of 

the 4D spatial structures of spacetime and its dual timespace requires spatial morphing, which 

resembles the curious behavior of Lagrange resolvents. It also mimics reexpansion of 

squeezed minimal string into yet another direction/dimension of the underlying spatial 

structure (even if it is not mentioned by name), or the field(s) immersed in the structure.  

The morphing also retrodicts the strange mapping of the radius R (cast in spacetime) of 

a closed string (when it is being squeezed beyond its minimal radius) into its inverse radius 

1/R (cast in timespace), which has already been discovered in string theories but remained 

mathematically unexplained thus far. The abstract mapping is consistent with special-

relativistic interpretation of physical meaning of fourth dimension of spacetime.  

The furling and unfurling of the fourth dimensions (of each of these two 4D spatial 

structures), by which the spatial morphing is implemented, further suggest that perhaps the 

vibrating string is just a spacetime representation of a pointletlike energy bubble that is cast in 

the vector base of the 4D dual timespace structure that corresponds to the 4D spacetime. If so 

then perhaps the vibrating string and its dual pointletlike energy bubblet might be viewed as 

just two mirror images of the same underlying stringlet reflected in the spacetime and 

timespace, respectively. The new hyperspatial duality is analogous to the experimentally 

confirmed wave-particle duality that emerged in quantum mechanics.  

Furthermore, if the mathematical stringlet is viewed as physically identifiable entity, 

then perhaps instead of looking for superpartners to regular particles in the 4D spacetime, one 

might view the superpartners as just abstract dual 4D representations of the regular particles, 

when the latter are recast in the 4D timespace that is dual to the 4D spacetime.  
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