Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transformacji falkowej Lifting Wavelet
Języki publikacji
Abstrakty
In the realm of Brain-Computer Interface (BCI), a crucial hurdle lies in effectively classifying Motor Imagery (MI) signals. Numerous techniques have been developed for Electroencephalogram (EEG) signal-based MI classification. The proposed system transforms EEG signals into various representations through Lifting Wavelet Transform (LWT). Long Short Term Memory (LSTM) is employed for classifying the extracted feature vectors in each line. The performance of this method is evaluated on the PhysioNet database, specifically for distinguishing between right and left hand imagery move. The strategy,resulting in 100% accuracy in 19 out of 72 wavelet families of LWT. This combination proves to be a highly efficient tool for BCI-based EEG analysis, showcasing its potential as a resourceful solution in this domain.
W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG). Proponowany system przekształca sygnały EEG na różne reprezentacje za pomocą transformacji falkowej Lifting Wavelet Transform (LWT). Pamięć długoterminowa Long Short Term Memory (LSTM) jest wykorzystywana do klasyfikowania wyodrębnionych wektorów cech w każdej linii. Wydajność tej metody jest oceniana w bazie danych PhysioNet, w szczególności w celu rozróżnienia ruchu obrazowania prawej i lewej ręki. Strategia ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT. Ta kombinacja okazuje się wysoce wydajnym narzędziem do analizy EEG opartej na BCI, pokazując swój potencjał jako zasobnego rozwiązania w tej dziedzinie.
Wydawca
Czasopismo
Rocznik
Tom
Strony
146--150
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Department of Robotics Engineering
- Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
- Department of Robotics Engineering
- Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
- Department of Biomedical Engineering
- Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
- Department of Psychology
- University of Calgary, Calgary, Canada
Bibliografia
- 1. Li, Yuanqing, Cuntai Guan, Huiqi Li, and Zhengyang Chin. "A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system." Pattern Recognition Letters 29, no. 9 (2008): 12851294.
- 2. Idris, Nur Farahaina, and Mohd Arfian Ismail. "A review of homogenous ensemble methods on the classification of breast cancer data." Przeglad Elektrotechniczny 2024, no. 1 (2024).
- 3. Paszkiel, Szczepan, Ryszard Rojek, Ningrong Lei, and M. Castro. "Review of solutions for the application of example of machine learning methods for Motor Imagery in correlation with Brain-Computer Interfaces." Przeglad Elektrotechniczny 1 (2021): 113-118.
- 4. Kołodziej, Marcin, Andrzej Majkowski, and Remigiusz J. Rak. "Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces." Przeglad Elektrotechniczny 88, no. 3 (2012): 28-30.
- 5. Putranto, Yulianto Tejo, Oddy Virgantara Putra, Isa Hafidz, Tri Arief Sardjono, Mochamad Hariadi, and Mauridhi Hery Purnomo. "An Improved Performance of Support Vector Machine to Classify EEG Motor Imagery based on Differential Asymmetry." Przeglad Elektrotechniczny 99, no. 6 (2023).
- 6. Rejer, Izabela, and Krzysztof Lorenz. "Classic genetic algorithm vs. genetic algorithm with aggressive mutation for feature selection for a brain-computer interface." Przeglad Elektrotechniczny 1, no. 2 (2015): 100-104.
- 7. Wang, Xiaying, Michael Hersche, Michele Magno, and Luca Benini. "MI-BMInet: An efficient convolutional neural network for motor imagery brain–Machine interfaces with EEG channel selection." IEEE Sensors Journal (2024).
- 8. Selim, Sahar, Manal Mohsen Tantawi, Howida A. Shedeed, and Amr Badr. "A csp\am-ba-svm approach for motor imagery bci system." Ieee Access 6 (2018): 49192-49208.
- 9. Osuagwu, Bethel A., Magdalena Zych, and Aleksandra Vuckovic. "Is implicit motor imagery a reliable strategy for a brain–computer interface?." IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, no. 12 (2017): 2239-2248.
- 10. Siuly, Siuly, and Yan Li. "Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computerinterface." IEEE Transactions on Neural Systems and Rehabilitation Engineering 20, no. 4 (2012): 526-538.
- 11. Schirrmeister, Robin Tibor, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball. "Deep learning with convolutional neural networks for EEG decoding and visualization." Human brain mapping 38, no. 11 (2017): 5391-5420.
- 12. Wu, Zhaohua, and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data analysis method." Advances in adaptive data analysis 1, no. 01 (2009): 1-41.
- 13. Taran, Sachin, Varun Bajaj, Dheeraj Sharma, Siuly Siuly, and Abdulkadir Sengur. "Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications." Measurement 116 (2018): 68-76.
- 14. Trad, Dalila, Tarik Al-Ani, and Mohamed Jemni. "A feature extraction technique of EEG based on EMD-BP for motor imagery classification in BCI." In 2015 5th international conference on information & communication technology and accessibility (ICTA), pp. 1-6. IEEE, 2015.
- 15. Zhang, Songjie, Yuliang Ma, Qizhong Zhang, and Yunyuan Gao. "Motor imagery electroencephalogram de-noising method based on EEMD and improved wavelet threshold." In 2018 Chinese Control And Decision Conference (CCDC), pp. 55895594. IEEE, 2018.
- 16. Pramudita, Brahmantya Aji, Yabes Dwi Nugroho, Igi Ardiyanto, Mohd Ibrahim Shapiai, and Noor Akhmad Setiawan. "Removing ocular artefacts in EEG signals by using combination of complete EEMD (CEEMD)—independent component analysis (ICA) based outlier data." In 2017 International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1-5. IEEE, 2017.
- 17. Wang, Hua, and Yanchun Zhang. "Detection of motor imagery EEG signals employing Naïve Bayes based learning process." Measurement 86 (2016): 148-158.
- 18. Dose, Hauke, Jakob S. Møller, Helle K. Iversen, and Sadasivan Puthusserypady. "An end-to-end deep learning approach to MIEEG signal classification for BCIs." Expert Systems with Applications 114 (2018): 532-542.
- 19. Roots, Karel, Yar Muhammad, and Naveed Muhammad. "Fusion convolutional neural network for cross-subject EEG motor imagery classification." Computers 9, no. 3 (2020): 72.
- 20. Li, Yurong, Hao Yang, Jixiang Li, Dongyi Chen, and Min Du. "EEG-based intention recognition with deep recurrentconvolution neural network: Performance and channel selection by Grad-CAM." Neurocomputing 415 (2020): 225-233.
- 21. Lun, Xiangmin, Zhenglin Yu, Tao Chen, Fang Wang, and Yimin Hou. "A simplified CNN classification method for MI-EEG via the electrode pairs signals." Frontiers in Human Neuroscience 14 (2020): 338.
- 22. Hou, Yimin, Lu Zhou, Shuyue Jia, and Xiangmin Lun. "A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN." Journal of neural engineering 17, no. 1 (2020): 016048.
- 23. Li, Ming-Ai, Jian-Fu Han, and Li-Juan Duan. "A novel MI-EEG imaging with the location information of electrodes." IEEE Access 8 (2019): 3197-3211.
- 24. Fan, Chen-Chen, Hongjun Yang, Zeng-Guang Hou, Zhen-Liang Ni, Sheng Chen, and Zhijie Fang. "Bilinear neural network with 3-D attention for brain decoding of motor imagery movements from the human EEG." Cognitive Neurodynamics 15 (2021): 181-189.
- 25. Alwasiti, Haider, Mohd Zuki Yusoff, and Kamran Raza. "Motor imagery classification for brain computer interface using deep metric learning." IEEE Access 8 (2020): 109949-109963.
- 26. Zhang, Dalin, Kaixuan Chen, Debao Jian, and Lina Yao. "Motor imagery classification via temporal attention cues of graph embedded EEG signals." IEEE journal of biomedical and health informatics 24, no. 9 (2020): 2570-2579.
- 27. Abenna, Said, Mohammed Nahid, and Abderrahim Bajit. "Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm." Biomedical Signal Processing and Control 71 (2022): 103102.
- 28. Lawhern, Vernon J., Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and Brent J. Lance. "EEGNet: a compact convolutional neural network for EEGbased brain–computer interfaces." Journal of neural engineering 15, no. 5 (2018): 056013.
- 29. Schirrmeister, Robin Tibor, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and Tonio Ball. "Deep learning with convolutional neural networks for EEG decoding and visualization." Human brain mapping 38, no. 11 (2017): 5391-5420.
- 30. Ananthi, A., M. S. P. Subathra, S. Thomas George, and J. Prasanna. "A review on-EEG signals by motor imagery based brain computer interface." In AIP Conference Proceedings, vol. 2670, no. 1. AIP Publishing, 2022.
- 31.G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, J.R. Wolpaw, “BCI2000: A general-purpose brain-computer interface (BCI) system.”, IEEE Transactions on Biomedical Engineering 51(6), pp. 1034-1043, 2004.
- 32. AL Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.” Circulation 101(23):e215-e220 [Circulation ElectronicPages: http://circ.ahajournals.org/cgi/content/full/101/23/e215]; June 13, 2000.
- 33. Teplan, Michal. "Fundamentals of EEG measurement." Measurement science review 2, no. 2 (2002): 1-11.
- 34. Sweldens, Wim. "The lifting scheme: A custom-design construction of biorthogonal wavelets." Applied and computational harmonic analysis 3, no. 2 (1996): 186-200.
- 35. Shinde, Abhijeet, and Zhikun Hou. "A wavelet packet based sifting process and its application for structural health monitoring." In Proceedings of the 2004 American Control Conference, vol. 5, pp. 4219-4224. IEEE, 2004.
- 36. Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schütze. "Comparative study of CNN and RNN for natural language processing." arXiv preprint arXiv:1702.01923 (2017).
- 37. Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." arXiv preprint arXiv:1508.01991 (2015).
- 38. Ananthi, A., M. S. P. Subathra, S. Thomas George, N. J. Sairamya, J. Prasanna, and P. Manimegalai. "Motor imaginary tasks-based EEG signals classification using continuous wavelet transform and LSTM network." In Computational Intelligence and Deep Learning Methods for Neurorehabilitation Applications, pp. 239-256. Academic Press, 2024.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cb5de8d-a132-4615-a80e-9a54a04af45f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.