Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objectives: The Electroencephalogram (EEG) signal is modified using the Motor Imagery (MI) and it is utilized for patients with high motor impairments. Hence, the direct relationship between the computer and brain is termed as an EEG-based brain-computer interface (BCI). The objective of this survey is to presents an analysis of the existing distinct BCIs based on EEG. Methods: This survey provides a detailed review of more than 60 research papers presenting the BCI-based EEG, like motor imagery-based techniques, spatial filtering-based techniques, Steady-State Visual Evoked Potential (SSVEP)- based techniques, machine learning-based techniques, Event-Related Potential (ERP)-based techniques, and online EEG-based techniques. Subsequently, the research gaps and issues of several EEG-based BCI systems are adopted to help the researchers for better future scope. Results: An elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques. Conclusions: This survey paper exposes research topics on BCI-based EEG, which helps the researchers and scholars, who are interested in this domain.
Czasopismo
Rocznik
Tom
Strony
art. no. 20190053
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
- Research Scholar, Dept. of Electronics &Telecommunication Engineering, AISSMS Institute of Information Technology, Pune 411001, India
- Dept. of Electronics & Telecommunication Engineering, Sinhgad College of Engineering, Affiliated to S.P. Pune Universit, Pune 411001, India
autor
- Dept. of Electronics & Telecommunication Engineering, Bharati Vidyapeeth’s College of Engineering for Women, Pune 411043, India
Bibliografia
- 1. Rabbani Q, Milsap G, Crone NE. The potential for a speech brain- computer interface using chronic electrocorticography. Neurotherapeutics 2019;16:144-65.
- 2. Vidal JJ. Toward direct brain-computer communication. Ann Rev Biophys Bioeng 2015;2:157-80.
- 3. Corsi M-C, Chavez M, Schwartz D, Laurent H. Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface. Int J Neural Syst 2018;28:12.
- 4. Khalaf A, Sejdic E, Akcakaya M. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound. J Neurosci Methods 2018;313:44-53.
- 5. Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O’Neill K, Scheinblum T, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng 2016;13: 036001.
- 6. Kotyra S, Wojcik GM. The station for neurofeedback phenomenon research. In: Polish conference on biocybernetics and biomedical engineering, 32-43. Cham: Springer; 2017.
- 7. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A. Sparse Bayesian classification of EEG for brain–computer interface. IEEE Transaction of Neural Networks and Learning Systems 2016;27: 2256-67.
- 8. Han C-H, Kim Y-W, Kim DY, Kim SH, Nenadic Z, Im C-H. Electroencephalography-based endogenousbrain-computer interface for online communication with a completely locked-in patient. J NeuroEng Rehabil 2019;16:1-13.
- 9. Foldes ST, Weber DJ, Collinger JL. MEG-based neuro feedback for hand rehabilitation. J NeuroEng Rehabil 2015;12:1-9.
- 10. JawadKhan M, Hong MJ, Hong K-S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci 2014;8:1-9.
- 11. Hong K-S, Khan MJ, Hong MJ. Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front Hum Neurosci 2018;12:1-25.
- 12. Kotyra S, Wojcik GM. Steady state visually evoked potentials and their analysis with graphical and acoustic transformation. Adv Intel Syst Comput 2017;647:22-31.
- 13. Byczuk M, Poryzała P, Materka A. SSVEP-based brain-computer interface: on the effect of stimulus parameters on VEPs spectral characteristics. In: Hippe ZS, Kulikowski JL, Mroczek T, editors. Human-computer systems interaction: backgrounds and applications, advances in intelligent and soft computing. Berlin; Heidelberg: Springer; 2012. pp. 3-14.
- 14. Besserve M, Jerbi K, Laurent F, Baillet S, Martinerie J, Garnero L. Classification methods for ongoing EEG and MEG signals. Biological research 2007;40:415-37.
- 15. Taga G, Homae F, Watanabe H. Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants. Neuroimage 2007;38: 452-60.
- 16. Wierzgała P, Zapała D, Grzegorz M. Wojcik, and Jolanta Masiak, “most popular signal processing methods in motor-imagery BCI: a review and meta-analysis”. Front Neuroinf 2018;12:1-17.
- 17. Corsi M-C, Chavez M, Khambhati AN, Bassett DS, De Vico Fallani F. Integrating EEG and MEG signals to improve motor imagery classification in brain–computer interface. Int J Neural Syst 2018; 28:12.
- 18. Md Isa NE, Amir A, Ilyas MZ, Razalli MS. Motor imagery classification in Brain computer interface (BCI) based on EEG signal by using machine learning technique. Bulletin of Electrical Engineering and Informatics 2019;8:269-75.
- 19. Duttaa S, Singh M, Kumar A. Classification of non-motor cognitive task in EEG basedbrain-computer interface using phase space features in multivariate empirical mode decomposition domain. Biomed Signal Process Contr 2018;39:378-89.
- 20. Siuly YL, Peng (Paul) W. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Comput Methods Progr Biomed 2014;113:767-80.
- 21. Wu S-L, Liu Y-T, Hsieh T-Y, Lin Y-Y, Chen C-Y, Chuang C-H, Lin C-T. Fuzzy integral with particle swarm optimization for a motorimagery-based brain-computer interface. IEEE Trans Fuzzy Syst 2016;25:21-8.
- 22. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. Optimizing spatial patterns with sparse fillter bands for motor-imagery based braincomputer interface. J Neurosci Methods 2015;255:85-91.
- 23. Hsu W-Y. EEG-based motor imagery classification using neurofuzzy prediction and wavelet fractal features. J Neurosci Methods 2010;189:295-302.
- 24. AIQattan D, Sepulveda F. Towards sign language recognition using EEG-based motor imagery brain computer interface. In: Proceedings of 5th International winter conference on braincomputer interface (BCI). Sabuk, South Korea: IEEE; 2017. pp. 5-8.
- 25. Raza H, Rathee D, Zhou S-M, Hubert C, Prasad G. Covariate shift estimation based adaptive ensemble learning for handling nonstationarity in motor imagery related EEG-based brain-computer interface. Neurocomputing 2019;343:154-66.
- 26. Zhang S, Wang S, Zheng D, Zhu K, Dai M. A novel pattern with high-level commands for encoding motor imagery-based brain computer interface. Pattern Recogn Lett 2019;125: 28-34.
- 27. Wei C-S, Wang Y-T, Lin C-T, Jung T-P. Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 2018;26: 400-6.
- 28. Rifai Chai GR, Sai Ho Ling N, Nguyen HT. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems. Biomed Eng Online 2017;16:5.
- 29. Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, et al. Multi-kernel extreme learning machine for EEG classification in braincomputer interfaces. Expert Syst Appl 2018;96:302-10.
- 30. García-Salinas JS, Villasenor-Pineda L, Reyes-García CA, TorresGarcía AA. Transfer learning in imagined speech EEG-based BCIs. Biomed Signal Process Contr 2019;50:151-7.
- 31. Jin Z, Zhou G, Gao D, Zhang Y. EEG classification using sparse Bayesian extreme learning machine for brain-computer interface. Neural Comput Appl 2018;32:6601-9.
- 32. Gandhi V, Prasad G, Coyle D, Behera L, Martin McGinnity T. Quantum neural network-based EEG filtering for a brain-computer interface. IEEE transactions on neural networks and learning systems 2013;25:278-88.
- 33. Zhang Y, Zhang X, Han S, Fan Z, Zhong X. Portable brain-computer interface based on novel convolutional neural network. Comput Biol Med 2019;107:248-56.
- 34. Das Chakladara D, Chakraborty S. Multi-target way of cursor movement in brain computer interface using unsupervised learning. Biologically Inspired Cognitive Architectures 2018;25: 88-100.
- 35. Tan C, Sun F, Kong T, Fang B, Zhang W. Attention-based transfer learning for brain-computer interface. In: Proceedings of IEEE International conference on acoustics, speech and signal processing (ICASSP). Brighton, UK: Publisher: IEEE; 2019, pp. 1154-8.
- 36. Luo T-j, Fan Y-c, Lv J-t, Zhou C-l. Deep reinforcement learning from error-related potentials via an EEG-based brain-computer interface. In: Proceedings of IEEE International conference on bioinformatics and biomedicine. Madrid, Spain: IEEE; 2018.
- 37. Jiao Y, Zhang Y, Wang Y, Wang B, Jin J, Wang X. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain–computer interface. Int J Neural Syst 2017;27:8.
- 38. Wang Y, Chen X, Gao X, Gao S. A benchmark dataset for SSVEPbased brain -computer interfaces. IEEE 2016;25:1746-52.
- 39. Zhang H, Yang H, Guan C. Bayesian learning for spatial filtering in an EEG-based brain–computer interface. IEEE transactions on neural networks and learning systems 2013;24:1049-60.
- 40. Lu J, Xie K, McFarland DJ. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain– computer interfaces. IEEE Trans Neural Syst Rehabil Eng 2014; 22:847-57.
- 41. Wu D, Kingy J-T, Chuang C-H, Lin C-T, Jung T-P. Spatial filtering for EEG-based regression problems in brain-computer interface (BCI). IEEE Trans Fuzzy Syst 2017;26:771-81.
- 42. Kumar Reddy T, Arora V, Behera L, Wang Y-K, Member, Lin C-T. Multi-class fuzzy time-delay common spatio-spectral patterns with fuzzy information theoretic optimization for EEG based regression problems in brain computer interface (BCI). IEEE Trans Fuzzy Syst 2019;27:1943-51.
- 43. McCormick M, Ma R, Coleman TP. An analytic spatial filter and a hidden markov model for enhanced information transfer rate in EEG-based brain computer interfaces. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas, TX, USA: IEEE; 2010. p. 602-5.
- 44. Kam T-E, Heung-II S, Lee S-W. Non-homogeneous spatial filter optimization for EEG-based brain-computer interfaces. In: Proceedings of International winter workshop on brain-computer interface(BCI). Gangwo, South Korea. IEEE; 2013.
- 45. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang X, et al. Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface. Med Biol Eng Comput 2011;49:181-91.
- 46. Zhang Y, Zhou G, Zhao Q, Jin J, Wang X, Cichocki A. Spatialtemporal discriminant analysis for ERP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2013;21:233-43.
- 47. Lian J, Bi L, Fei W. A novel event-related potential-based braincomputer interface for continuously controlling dynamic systems. IEEE Access 2019;7:38721-9.
- 48. Han C-H, Kim Y-W, Kim DY, Kim SH, Nenadic Z, Chang-Hwan I. Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient. J Neuro Eng Rehabil 2019:16-8. https://doi.org/10.1186/s12984-019-0493-0.
- 49. Hazrati MK, Erfanian A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phys 2010;32:730-9.
- 50. Wang Y-K, Chen S-A, Lin C-T. An EEG-based brain-computer interface for dual task driving detection. Neurocomputing 2014; 129:85-93.
- 51. Kosmyna N, Lecuyer A. A conceptual space for EEG-based braincomputer interfaces. PloS one 2019;14:1-30.
- 52. Guger C, Schlögl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G. Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 2001;9:49-58.
- 53. Paris A, George A, Vosoughi A, Berman SA. A new statistical model of Electroencephalogram noise spectra for real-time braincomputer interfaces. IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2017;64:1688-700.
- 54. Chatelle C, Spencer CA, Cash SS, Hochberg LR, Edlow BL. Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin Neurophysiol 2018;129:1519-25.
- 55. Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A. Sparse Bayesian classification of EEG for brain–computer interface. IEEE Trans Neural Networ Learn Syst 2015;27:2256-67.
- 56. Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de Vico Fallani F, Millan JDR, Molinari M, Mattia D. EEG-based brain-computer interface to support post-stroke motor rehabilitation of the upper limb. In: Proceedings of 34th annual International conference of the IEEE EMBS. San Diego, CA, USA: IEEE; 2012.
- 57. Mahajana R, Bansalb D. Real time EEG based cognitive brain computer interface for control applications via Arduino interfacing. Procedia Comput Sci 2017;115:812-20.
- 58. Shin Y, Lee S, Ahn M, Cho H, Chan S, Lee H-N. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications. Comput Biol Med 2015;66:29-38.
- 59. Jawad Khan M, Hong MJ, Hong K-S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci 2014;8:244.
- 60. Lin CT, Fu CL, Chen SA, Shao WL, Chen TC, Ko LW. EEG-based brain computer interface for smart living environmental auto adjustment. J Med Biol Eng 2010;30:237-45.
- 61. Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013;112:172-8.
- 62. Noirhomme Q, Kitney RI, Macq B. Single-trial EEG source reconstruction for brain-computer interface. IEEE Trans Biomed Eng 2008;55:1592-601.
- 63. Belwafi K, Romain O, Gannouni S, Ghaffari F, Djemal R, Ouni B. An embedded implementation based on adaptive filter bank for braincomputer interface systems. J Neurosci Methods 2018;305:1-16.
- 64. Trofimov AG, Shishkin SL, Kozyrskiy BL, Velichkovsky BM. A greedy feature selection algorithm for brain computer interface classification committees. In: Proceedings of 8th annual conference on biologically inspired cognitive architectures. Moscow, Russia: Elsevier; 2017.
- 65. Matanga Y, Djouani K, Kurien A. Analysis of user control attainment in SMR-based brain computer interfaces. IRBM 2018; 39:324-33.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cb59571-38a2-41fb-a0a5-107f8022ad1f