PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accumulation of Chemical Elements by Organs of Sparganium Erectum L. and Their Potential Use in Phytoremediation Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of bottom sediments and organs of Sparganium erectum carried out in the summer of 2014 in the city of Lębork, located in Northern Poland. The aim of this study was to evaluate the content of macroelements and heavy metals in the leaves, rhizomes and roots S. erectum and in bottom sediments of the Łeba River as well as comparison of accumulation and translocation factors of N, P, K, Mg, Ca, Zn, Ni, Cu, Mn, Fe, Cd and Cr in researched organs of aquatic plant. The use of S. erectum for biomonitoring and phytoremediation has also been considered. The results of Mann Whitney U test showed a number of statistically significant differences in the content of chemical elements in the leaves, rhizomes, roots and in bottom sediments. The macroelements are mainly accumulated in leaves and heavy metals are accumulated in roots and rhizomes of S. erectum. Increased Mn and Fe content in roots and rhizomes of S. erectum, in relation this physiological needs, refers to the beneficial effects of this species in the water treatment and sludge from the bottom sediment of manganese and iron compounds. The obtained bioconcentration and translocation factors values allowed to state that S. erectum can be used for phytoremediation of contaminated bottom sediments because retains metals in their roots and limit Mn and Fe mobility from roots and rhizomes to leaves once absorbed by roots of plant.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 50 poz., tab., rys.
Twórcy
  • Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, 22 Arciszewskiego St., 76-200 Słupsk, Poland
Bibliografia
  • 1. Aksoy A., Demirezen D., Duman F. 2005. Bioaccumulation, detection and analyses of heavy metal pollution in Sultan marsh and its environment. Water Air Soil Poll. 164, 241–255.
  • 2. Allen S.E. 1989. Analysis of ecological materials. 2nd ed. Blackwell Scientific Publications, Oxford.
  • 3. Alloway B.J., 1995. Soil processes and the behavior of metals. In: Alloway B.J. (Ed.) Heavy metals in soils. 2nd ed. Blackie, Glasgow, 7–28.
  • 4. Baker A.J.M., Brooks R.R. 1989. Terrestrials higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–26.
  • 5. Baldantoni D., Ligrone R., Alfania A. 2009. Macro- and trace-element concentration in leaves and roots of Phragmites australis in volcanic lake in Southern Italy. J. Geochem. Explor. 101, 166–174.
  • 6. Bojakowska, I., Sokołowska G., 1998. Geochemical sediments class purity water. Przegląd Geologiczny 46, 1, 49–54.
  • 7. Bojakowska I., Gliwicz T., Małecka K., 2006. Geochemical research results of water sediments in Poland 2003–2005. The Library of Environment Monitoring. Natural Environment Protection Inspectorate. Warsaw.
  • 8. Bonanno G., Lo Giudice R., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10, 639–645.
  • 9. Bose S., Chandrayan S., Rai V., Bhattacharya A.K., Ramanathan A.L. 2008. Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge. Biores. Technol. 99, 4467–4475.
  • 10. Boyd C.E. 1995. Bottom soils, sediment, and pond aquaculture. Chapman & Hall, New York.
  • 11. Cardwell A.J., Hawker D.W., Greenway M. 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48, 653–663.
  • 12. Chiarenzelli J.R., Aspler L.B., Dunn C., Cousens B., Ozarko D.L., Powis K.B. 2001. Multielements and rare earth element composition of lichens, mosses and vascular plants from Central Barrenlands. Nunavut, Canada. Appl. Geochem, 16, 245–270.
  • 13. Cui S., Zhou Q., Chao L. 2007. Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ. Geol., 51, 1043–1048.
  • 14. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri Turkey). Chemosphere 56, 685–696.
  • 15. Deng H., Ye Z.H., Wong M.H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut. 132, 29–40.
  • 16. Grzebisz W. 2003. Mechanisms of collection of phosphorus by the plant. In: Elements in the environment. Phosphorus. J. Elem. 8, 3, 33–46.
  • 17. Helios-Rybicka E. 1991. Phase –specific bonding of heavy metals in the sediments of the Vistula River, Poland. Appl. Geochem. 2, 45–48.
  • 18. Hozhina E.I., Khramov A.A., Gerasimov P.A., Kumarkov A.A. 2001. Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 74, 153–164.
  • 19. Kabata-Pendias A., Pendias H. 1999. Biogeochemistry of trace elements. Polish Scientific Publishing, Warszawa.
  • 20. Klink A., Wisłocka M., Musiał M., Krawczyk J. 2013. Macro- and trace-elements accumulation in Typha angustifolia L. and Typha latifolia L. organs and their use in bioindication. Pol. J. Environ. Stud. 22, 1, 183–190.
  • 21. Lawa 1998. Landesarbeitsgemeinschaft Wasser: Beurteilung der Wasserbeschaffen-heit von Fließgewässern in der Bundesrepublik Deutschland – chemische Gewässergüteklassifikation, Zielvorgaben zum Schutz oberirdischer binnengewässer – Band 2, Berlin.
  • 22. Lis J., Pasieczna A. 1995. Geochemical atlas of the city and area. PIG, Warszawa.
  • 23. Łojko R., Polechońska L., Klink A., Kosiba P. 2015. Trace metal concentrations and their transfer from sediment to leaves of four common aquatic macrophytes. Environ. Sci. Pollut. Res. 22, 19, 15123-31. doi: 10.1007/s11356-015-4641-1.
  • 24. Mays P.A., Edwards G.S. 2001. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol. Eng., 16, 487–500.
  • 25. Miretzky P., Saralegui A., Cirelli A.F. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57, 997–1005.
  • 26. Ostrowska A., Porębska G. 2002. The chemical composition of plants, its interpretation and use in environmental protection. Institute of Environmental Protection, Warsaw.
  • 27. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Methods of analysis and evaluation of soil properties and plant. Institute of Environmental Protection, Warsaw.
  • 28. Parzych A., Jonczak J. 2014. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng. 15, 3, 29–38.
  • 29. Parzych A., Cymer M., Jonczak J., Szymczyk S. 2015a. The ability of leaves and rhizomes of aquatic plants to accumulate macro- and micronutrients. J. Ecol. Eng., 16, 3, 198–205.
  • 30. Parzych A., Sobisz Z., Cymer M. 2015b. Preliminary research of heavy metals content by aquatic macrophytes taken from surface water (northern Poland). Desalination and Water Treatment. 1-11. doi:10.1080/19443994.2014.1002275.
  • 31. Qian Y., Gallagher F.J., Feng H., Wu M. 2012. A geochemical study of toxic metal translocation in an urban brownfield wetland. Environ. Pollut. 166, 23–30.
  • 32. Salem Z.B., Laffray X., Ashoour A., Ayadi H., Aleya L. 2014. Metal accumulation and distribution in the organ of reeds and cattails in a constructed treatment wetland (Etueffont, France). Ecol. Eng. 64, 1–17.
  • 33. Salt D.E., Kramer U. 2000. Mechanisms of metal hyperaccumulation in plants, phytoremediation of toxic metals: Using plants to clean up the environment. In: I. Raskin and B.D. Ensley (Eds.), Wiley and Sons, 231–246.
  • 34. Samecka-Cymerman A., Kempers A.J. 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci. Total Environ. 281, 87–98.
  • 35. Sarosiek J., Wożakowska-Natkaniec H. 1993. Chromium and nickel in plants of the Family Lemnaceae and in their environment. In: A. Kabata-Pendias (Ed.) Chromium, nickel and aluminum – ecological problems and methodical. Zeszt. Nauk PAN. Kom. Człowiek i środowisko 5, 49–54.
  • 36. Sasmaz A., Obek E., Hasar H. 2009. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol. Eng. 33, 278–284.
  • 37. Sharma P., Asaeda T., Manatunge J., Fijino T. 2006. Nutrient cycling in a natural stand of Typha angustifolia. J. Freshwater Ecol. 21, 431–438.
  • 38. Sharma S., Singh B., Manchanda V.K. 2015. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. 22, 946–962.
  • 39. Skorbiłowicz E., Wiater, J. 2003. Estimation of water environment of Nereśl River the course section within peat bogs and swamps area. Acta Agrophysica 1, 1, 183–190.
  • 40. Smal H., Salomons W. 1995. Acidification and its long-term impact on metal mobility, In: Bio geodynamics of pollutants in soils and sediments. Springer-Verlag, Berlin, 193–212.
  • 41. Sobczyński T., Elbanowska H., Zerze J., Siepak J. 1996. Digestion of samples of bottom sediments prior to the determination of total contents of heavy metals, Gospodarka Wodna 6, 173–175.
  • 42. Szoszkiewicz K., Zbierska J., Jusik S., Zgoła T. 2010. Makrofitowa Metoda Oceny Rzek. Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o rośliny wodne. Wyd. Nauk. Bogucki, Poznań.
  • 43. Teuchies J., Jacobs S., Oosterlee L., Bervoets L., Meire P. 2013. Role of plants in metal cycling in a tidal wetland: Implications for phytoremediation, Sci. Total Environ. 445–446, 146–154.
  • 44. Vardanyan L.G., Ingole B.S. 2006. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake system. Environ. Int. 32, 208–218.
  • 45. Woitke P., Wellmitz J., Helm D., Kube P., Lepom P., Litheraty P. 2003. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere 51, 633–642.
  • 46. Wołek J. 2006. Introduction to Statistics for biologists, Wyd. Nauk. Pedagogical Akademy, Kraków.
  • 47. Yoon J., Cao X., Zhou Q., Ma L.Q. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ., 368: 456–464.
  • 48. Zaborowska A. 2015. Zinc and manganese accumulation in the shoot Sparganium erectum and bottom sediments of Łeba River in Lębork. Pomerania Academy, mscr, Słupsk.
  • 49. Zang M., Cui L., Sheng L., Wang Y. 2009. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecol. Eng. 35, 563–569.
  • 50. Zayed A., Lytle C.M., Qian J.H., Terry N. 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206, 293–299.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cb0d571-173c-4447-b578-cae954cf46db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.