PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laccases – enzymes with an unlimited potential

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laccases (EC 1.10.3.2) are among the few enzymes, the history of which dates back to the 19th century. These oxidoreductases are present in almost all known fungi, some species of higher plants and insects. Moreover, in recent years, these enzymes have also been found in some bacterial organisms. Due to their significant properties and structure of the catalytic centre, laccases have been classified as the multicopper oxidases (MCOs). These enzymes are able to catalyse the oxidation of phenolic and non-phenolic compounds, with the aid of small molecules referred to as mediators. Thanks to their diverse nature, laccases have gained attention of both scientists and entrepreneurs from all over the world. Their significance is reflected in countless scientific and industrial applications, wherein laccases have become inseparable from chemical syntheses, the food industry, textile industry, biosensor design and the environmental protection. This paper gathers the most important information and the latest scientific discoveries relating to this desirable biocatalyst.
Rocznik
Strony
41--70
Opis fizyczny
Bibliogr. 140 poz., il. kolor., rys.
Twórcy
  • Institute of Technical Biochemistry, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz
autor
  • Institute of Technical Biochemistry, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz
  • Institute of Technical Biochemistry, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz
autor
  • Institute of Technical Biochemistry, Department of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz
Bibliografia
  • 1. Yoshida H. Chemistry of lacquer (Urushi). Part I. Communication from the chemical society of Tokio. J Chem Soc Trans 1883, 43:472-486.
  • 2. Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 2001, 56:225-232.
  • 3. Thurston CF. The structure and function of fungal laccases. Microbiology 1994, 140:19-26.
  • 4. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 1990, 268:475-480.
  • 5. Madhavi V, Lele SS. Laccase: properties and applications. BioResources 2009, 4:1694-1717.
  • 6. Rezaei S, Shahverdi AR, Faramarzi MA. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 2017, 230, 67-75.
  • 7. de Marco A, Roubelakis-Angelakis KA. Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry 1997, 46:421-425.
  • 8. Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin JL, Turecek F. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 2001, 57:385-392.
  • 9. Kiiskinen L-L, Rättö M, Kruus K. Screening for novel laccase-producing microbes. J Appl Microbiol 2004, 97:640-646.
  • 10. Thakker GD, Evans CS, Rao KK. Purification and characterization of laccase from Monocillium indicum Saxena. Appl Microbiol Biotechnol 1992, 37(3):321-323.
  • 11. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Designer laccases: a vogue for high-potential fungal enzymes. Trends Biotechnol 2010, 28:63-72.
  • 12. Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 2003, 278:19416-19425.
  • 13. Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci CMLS 2015, 72:911-922.
  • 14. Sakurai T, Kataoka K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec N Y N 2007, 7: 220-229.
  • 15. Fang Z, Zhou P, Chang F, Yin Q, Fang W, Yuan J, Xuecheng Z, Xiao Y. Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS ONE, 2014, 9(7):1-6 Retrieved April 16, 2015, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103834/.
  • 16. Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W. Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Commun 2007, 354:21-26.
  • 17. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database J Biol Databases Curation 2011, Retrieved April 16, 2015, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077825/.
  • 18. Institute of Technical Biochemistry. University of Stuttgart: Laccase and Multicopper Oxidase Engineering Database, https://lcced.biocatnet.de/sequence-browser (03.02.2016).
  • 19. Weirick T, Sahu SS, Mahalingam R, Kaundal R. LacSubPred: predicting subtypes of accases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinformatics 2014, 15 Suppl 11, S15.
  • 20. Perry CR, Smith M, Britnell CH, Wood DA, Thurston CF. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol 1993, 193:1209-1218.
  • 21. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci CMLS 2010, 67: 369-385.
  • 22. Rühl M, Majcherczyk A, Kües U. Lcc1 and Lcc5 are the main laccases secreted in liquid cultures of Coprinopsis cinerea strains. Antonie Van Leeuwenhoek 2013, 103: 1029-1039.
  • 23. Yuan X, Tian G, Zhao Y, Zhao Y, Wang H, Ng T. Biochemical characteristics of three laccase isoforms from the Basidiomycete Pleurotus nebrodensis. Molecules 2016, 21:2-15.
  • 24. Chen S, Ge W, Buswel J. Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiol Lett 2004, 30: 171-176.
  • 25. Kumar SVS, Phale PS, Durani S, Wangikar PP. Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 2003, 83:386-394.
  • 26. Cázares-García SV, Vázquez-Garcidueñas S, Vázquez-Marrufo G. Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PloS One 2013, 8:e55295.
  • 27. Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 2015, 17(2):326-342.
  • 28. Papinutti L, Martinez M. Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus. J Chem Technol Biotechnol 2006, 81(6):1064-1070.
  • 29. Zouari N, Romette J-L, Thomas D. Purification and properties of two laccase isoenzymes produced by Botrytis cinerea. Appl Biochem Biotechnol 1987, 15(3): 213-225.
  • 30. Skálová T, Dušková J, Hašek J, Stěpánková A, Koval T, Østergaard LH, Dohnaleg J. Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an improved resolution of 2.3 Å. Acta Crystallograph Sect F Struct Biol Cryst Commun 2011, 67:7-32.
  • 31. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat Struct Biol 1998, 5:310-316.
  • 32. Gunne M, Höppner A, Hagedoorn P-L, Urlacher VB. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. FEBS J 2014, 281:4307-4318.
  • 33. Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell. Mol. Life Sci. CMLS 2015, 72:857-868.
  • 34. Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J. A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 2008, 162:29-39.
  • 35. Bento I, Martins L., Lopes G., Carrondo M., Lindley PF dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 2005, 7:3507-3513.
  • 36. Murphy ME, Lindley PF, Adman ET. Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions. Protein Sci Publ Protein Soc 1997, 6:761-770.
  • 37. Nakamura K, Kawabata T, Yura K, Go N. Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. FEBS Lett 2003, 553:239-244.
  • 38. Lawton T, Sayavedra-Soto L, Arp D. Crystal structure of a two-domain multicopper oxidase. J Biol Chem 2009, 15:10174-10180.
  • 39. Claus H. Laccases: structure, reactions, distribution. Micron Oxf Engl 2004, 35:93-96.
  • 40. Daroch M, Houghton CA, Moore JK, Wilkinson MC, Carnell AJ, Bates AD, Iwanejko LA. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzyme Microb Technol 2014, 10:58-59.
  • 41. Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CH, Hatakka A. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 1997, 156:9-14.
  • 42. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV. Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 2004, 30:19-24.
  • 43. Bourbonnais R, Paice MG. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 1992, 36:823-827.
  • 44. Alcalde M. Laccases: biological functions, molecular structure and industrial applications. In: Industrial Enzymes, Polaina J, MacCabe AP Eds; Springer Netherlands 2007, 461-476. Retrieved April 16, 2015, from http://link.springer.com/chapter/10.1007/1-4020-5377-0_26.
  • 45. Klonowska A, Guadin C, Fournel A, Asso M, Le Petit J, Giorgi M, Tron T. Characterization of a low redox potential laccase from the basidiomycete C30. Eur J Biochem 2002, 269:6119-6125.
  • 46. Mate DM, Alcalde M. Laccase engineering: From rational design to directed evolution. Biotechnol Adv 2015, 33:25-40.
  • 47. Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem 2002, 277:37663-37669.
  • 48. Tadesse MA, D’Annibale A, Galli C, Gentili P, Sergi F. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org Biomol Chem 2008, 6:868-878.
  • 49. Shiba T, Xiao L, Miyakoshi T, Chen C-L. Oxidation of isoeugenol and coniferyl alcohol catalyzed by laccases isolated from Rhus vernicifera stokes and Pycnoporus coccineus. J. Mol. Catal B Enzym 2000, 10:605-615.
  • 50. Wong DWS. Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 2008, 157(2):174-209.
  • 51. Polak J, Jarosz-Wilkolazka A. Fungal laccases as green catalysts for dye synthesis. Process Biochem 2012, 47(9):1295-1307.
  • 52. Widsten P, Kandelbauer A. Laccase applications in the forest products industry: A review. Enzyme Microb Technol 2008, 42:293-307.
  • 53. Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 1990, 267:99-102.
  • 54. Kawai S, Umezawa T, Higuchi T. Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 1988, 262:99-110.
  • 55. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 2015, 33:13-24.
  • 56. Johannes C, Majcherczyk A. Laccase activity tests and laccase inhibitors. J Biotechnol 2000, 78:193-199.
  • 57. Eggert C, Temp U, Dean JFD, Eriksson K-EL. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 1996, 391:144-148.
  • 58. Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci CMLS 2015, 72:923-940.
  • 59. Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 2009, 82:605-624.
  • 60. Setti L, Giuliani S, Spinozzi G, Pifferi PG. Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol 1999, 25:285-289.
  • 61. Mustafa R, Muniglia L, Rovel B, Girardin M. Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydro-organic biphasic system. Food Res Int 2005, 38:995-1000.
  • 62. Jonas U, Hammer E, Haupt ET, Schauer F. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus. Arch Microbiol 2000, 174:393-398.
  • 63. Shultz A, Jonas U, Hammer E, Schauer F. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 2001, 67:4377-4381.
  • 64. Intra A, Nicotra S, Riva S, Danieli B. Significant and unexpected solvent influence on the selectivity of laccase-catalyzed coupling of tetrahydro 2-naphthol derivatives. Adv Synth Catal 2005, 347:973-977.
  • 65. Ciecholewski S, Hammer E, Bose G, Nguyen V, Lnager P, Schauer F. Laccase-catalyzed carbon-carbon bond formation: oxidative dimerization of salicylic esters by air in aqueous solution. Tetrahedron 2005, 61:4615-4619.
  • 66. Constantin M, Conrad J, Beifuss U. Laccase-catalyzed oxidative phenolic coupling of vanillidene derivatives. Green Chem 2012, 14:2375-2379.
  • 67. Cannatelli MD, Ragauskas AJ. Laccase-catalyzed a-arylation of benzoylacetonitrile with substituted hydroquinones. Chem Eng Res Des 2015, 97:128-134.
  • 68. Chaurasia P, Yadava S, Bharati L, Singh S. Selective oxidation and N-coupling by purified laccase of Xylaria polymorpha MTCC-1100. Russ J Bioorg Chem 2014, 40:455-460.
  • 69. Tatsumi K, Freyer A, Minard RD, Bollag JM. Enzymatic coupling of chloroanilines with syringic acid, vanillic acid and protocatechuic acid. Appl Microbiol Biot 2009, 82:605-624.
  • 70. Timo H, Niedermeyer T, Lalk M. Nuclear amination catalyzed by fungal laccases: Comparison of laccase catalyzed amination with known chemical routes to aminoquinones. J Mol Catal B-Enzym 2007, 45:113-117.
  • 71. Mikolasch A, Matthies A, Lalk M. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical route. Appl Microbiol Biot 2008, 80:389-397.
  • 72. Mikolash A, Wurster M, Lalk M, Witt S, Seefekdt S, Hammer E, Schauer F, Julich WD, Lindequist U. Novel β-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharmeceutical Bull 2008, 56:902-907.
  • 73. Hahn V, Mikolasch A, Manda K, Gordes D. Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones. Amino Acids 2009, 37:315-321.
  • 74. Habibi D, Rahimi A, Rostami A, Moradi S. Green and mild laccase-catalyzed aerobic oxidative coupling of benzenediol derivatives with various sodium benzenesulfinates. Tetrahedron Lett 2017, 58(4):289-293.
  • 75. Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol 2002, 13:205-216.
  • 76. Conrad LS, Sponholz WR, Berker O. Treatment of cork with a phenol oxidizing enzyme. Retrieved April 16, 2015, from http://www.google.com/patents/US6152966.
  • 77. Flander L, Holopainen U, Kruus K, Buchert J. Effects of tyrosinase and laccase on oat proteins and quality parameters of gluten-free oat breads. J Agric Food Chem 2011, 59:8385-8390.
  • 78. Mathiasen E. Laccase and beer storage. Retrieved July 24, 2015, from http://www.google.com/patents/WO1995021240A2 2015.
  • 79. Yin L, Ye J, Kuang S, Guan Y, You R. Induction, purification, and characterization of a thermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice. Biosci Biotechnol Biochem 2017, 1-8, DOI: http://dx.doi.org/10.1080/09168451.2017.1279850.
  • 80. Thakur S, Patel H, Gupte S, Gupte A. Laccases: The biocatalyst with industrial and biotechnological applications. In: Microorganisms in sustainable agriculture and biotechnology, Satyanarayana T, Johri BN, Prakash A Eds; Springer Netherlands 2015, 309-342.
  • 81. Bajpai DP, Bajpai DPK, Kondo PDR. Pulp bleaching with white rot fungi and their enzymes. In: Biotechnology for environmental protection in the pulp and paper industry, Bajpal P, Bajpal PK, Kongo R Eds; Springer Berlin Heidelberg 1999,65-89.
  • 82. Geng X, Li K, Xu F. Investigation of hydroxamic acids as laccase-mediators for pulp bleaching. Appl Microbiol Biotechnol 2004, 64:493-496.
  • 83. Monteiro MC, de Carvalho ME. Pulp bleaching using laccase from Trametes versicolor under high temperature and alkaline conditions. Appl Biochem Biotechnol 1998, 70-72:983-993.
  • 84. Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel, Fournel A, Sigoillot JC, Asther M. Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 2004, 64:346-352.
  • 85. Witayakran S, Ragauskas AJ. Modification of high-lignin softwood kraft pulp with laccase and amino acids. Enzyme Microb Technol 2009, 44:176-181.
  • 86. Elegir G, Kindl A, Sadocco P, Orlandi M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 2008, 43(2):84-92.
  • 87. Fillat A, Gallardo O, Vidal T, Pastor FIJ, Díaz P, Roncero MB. Enzymatic grafting of natural phenols to flax fibres: Development of antimicrobial properties. Carbohydr Polym 2012, 87:146-152.
  • 88. Kudanga T, Prasetyo EN, Sipilä J, Nyanhongo GS, Guebitz GM. Enzymatic grafting of functional molecules to the lignin model dibenzodioxocin and lignocellulose material. Enzyme Microb Technol 2010, 46:272-280.
  • 89. Johansson K, Gillgren T, Winestrand S, Järnström L, Jönsson LJ. Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films. J Biol Eng 2014, 8:1-10.
  • 90. Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ. Oxygen-scavenging coatings and films based on lignosulfonates and laccase. J Biotechnol 2012, 161:14-18.
  • 91. Rodríguez-Couto S. Laccases for denim bleaching: an eco-friendly alternative. Open Text. J 2012, 5:1-7.
  • 92. Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Uses of Laccases in the food industry. Enzyme Res 2010, 1-8, doi:10.4061/2010/91876.1
  • 93. Felby C, Thygesen LG, Sanadi A, Barsberg S. Native lignin for bonding of fiber boards—evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Ind.. Crops Prod 2004, 20:181-189.
  • 94. Kunnas J, Laine J, Qvintus-Leino P, Tuominen S, Widsten P. Method of producing compressed layered structures. WO2003047826 A1 2003, Retrieved December 20, 2015, from http://www.google.com.ar/patents/WO2003047826A1.
  • 95. Cañas AI, Camarero S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 2010, 28:694-705.
  • 96. Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 2011, 31:20-31.
  • 97. Jurado M, Prieto A, Martínez-Alcalá A, Martínez AT, Martínez MJ. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 2009, 100:6378-6384.
  • 98. Brar SK, Dhillon GS, Soccol CR. Biotransformation of waste biomass into high value biochemicals. New York, NY: Springer New York 2014, Retrieved December 20, 2015, from http://link.springer.com/10.1007/978-1-4614-8005-1.
  • 99. Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 2006, 24:500-513.
  • 100. Rodríguez E, Pickard MA, Vazquez-Duhalt R. Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 1999, 38:27-32.
  • 101. Chairin T, Nitheranont T, Watanabe A, Asada Y, Khanongnuch C, Lumyong S. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona. Appl Biochem. Biotechnol 2013, 169:539-545.
  • 102. Forootanfar H, Moezzi A, Aghaie-Khozani M, Mahmoudjanlou Y, Ameri A, Niknejad F, Faramarzi MA. Synthetic dye decolorization by three sources of fungal laccase. Iran. J. Environ. Health Sci Eng 2012, 9(1):1-10.
  • 103. Mirzadeh S-S, Khezri S-M, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng 2014, 12(1), 6:1-9.
  • 104. Chen J, Leng J, Yang X, Liao L, Liu L, Xiao A. Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 2017, 22(2):1-11.
  • 105. Wang T-N, Zhao M. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Appl Microbiol Biotechnol 2017, 101:685-696.
  • 106. Alcalde M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 2006, 24:281-287.
  • 107. Asgher M, Bhatti HN, Ashraf M, Legge RL. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 2008, 19:771-783.
  • 108. Niku-Paavola M-L, Viikari L. Enzymatic oxidation of alkenes. J Mol Catal B Enzym 2000, 10:435-444.
  • 109. Zeng S, Qin X, Xia L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem Eng.J 2017, 119(15):92-100.
  • 110. Bressler DC, Fedorak PM, Pickard MA. Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol Lett 2000, 22:1119-1125.
  • 111. Jahangiri E, Seiwert B, Reemtsma T, Schlosser D. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity. Chemosphere 2017, 16B:549-558.
  • 112. Mikolasch A, Hammer E, Jonas U, Popowski K, Stielow A, Schauer F. Synthesis of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron 2002, 58:7589-7593.
  • 113. Upadhyay P, Shrivastava R, Agraval PK. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6:1-15.
  • 114. Mikolasch A, Manda K, Schluter R, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Julich WD, Lindequist U. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics. Biotechnol Aplied Biochem 2012, 59:295-306.
  • 115. Schafera A, Spechtb M, Hetzheimc A, Franckeb W, Schauera F. Synthesis of substituted imidazoles and dimerization products using cells and laccase from Trametes versicolor. Tetrahedron 2001, 57:7693-7699.
  • 116. Qwebani-Ogunleye T, Kolesnikova NI, Steenkamp P, de Koning CB, Brady D, Wellington KW. A one-pot laccase-catalysed synthesis of coumestan derivatives and their anticancer activity. Bioorg Med Chem 2017, 25:1172-1182.
  • 117. Harris ZL, Davis-Kaplan SR, Gitlin JD, Kaplan J. A fungal multicopper oxidase restores iron homeostasis in aceruloplasminemia. Blood 2004, 103:4672-4673.
  • 118. Wang HX, Ng TB. Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 2004, 315:450-454.
  • 119. Zhang G., Chen QJ, Wang HX, Ng T. A laccase with inhibitory activity against HIV-1 reverse transcriptase from mycorrhizal fungus Lepiota ventrisospora. J Og Mol Catal B-Enzym 2013, 85-86:31-36.
  • 120. Sun J, Wang HX, Ng T. Isolation of a laccase with HIV-1 reverse transcriptase inhibitory activity from fresh fruiting bodies of the Lentinus edodes. Indian J Biochem 2011, 48:88-94.
  • 121. Wu YY, Huang C, Chen QJ, Wang HX, Zhang G. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed. Chromatogr 2014, 28(4):548-553.
  • 122. Zhao S, Rong Ch-B, Kong Ch, Wang H-X, Zhang G-Q. A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus. Biomed Res Int 2014, 417461:1-8.
  • 123. Xu L, Wang H, Ng T, Xu L, Wang H, Ng T. A laccase with HIV-1 reverse transcriptase inhibitory activity from the broth of mycelial Culture of the Mushroom Lentinus tigrinus. BioMed Res Int BioMed Res Int 2012, e536725:1-7.
  • 124. Sun J, Chen QJ, Cao QQ, Wu YY, Xu L. J, Zhu MJ, Ng T-B, Wang H-X, Zhang G-Q. A laccase with antiproliferative and HIV-I reverse transcriptase inhibitory activities from the mycorrhizal fungus Agaricus placomyces. J Biomed Biotechnol 2012, 2012:1-8, doi:10.1155/2012/736472.
  • 125. Araujo R, Fernandes M, Cavaco PA, Gomes A. Biology of human hair: know your hair to control it. Adv Biochem Eng Biotechnol 2011, 13:121-143.
  • 126. Jeon J-R, Kim E-J, Murugesan K, Park H-K, Kim Y-M, Kwon J-H, Kim W-G, Lee J-Y, Chang Y-S. Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing: Enzymatic colourations driven by homo- or hetero-polymer synthesis. Microb Biotechnol 2010, 3:24-335.
  • 127. Chen C-Y, Huang Y-C, Wei C-M, Meng M, Liu W-H, Yang C-H. Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express 2013 3(49):1-9.
  • 128. Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiol. Read. Engl 2003, 149:455-2462.
  • 129. Golz-Berner K, Walzel B, Zastrow L, Doucet O. Cosmetic or dermatological preparation with skin-lightening Proteins. WO/2004/017931 2004, Retrieved July 24, 2015, from https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2004017931.
  • 130. Markussen EK, Jensen PE. Stabilisation of granules comprising active compounds. WO2006053564 A2 2006, Retrieved July 24, 2015, from http://www.google.ee/patents/WO2006053564A2.
  • 131. Narise A, Takase T, Kikuchi S, Osawa K. Deodorizing composition under weak acidity. US20110033392 A1 2011, Retrieved July 24, 2015, from http://www.google.com.ar/patents/US20110033392.
  • 132. Roggen EL, Ernst SE, Svendsen A, Friis EP, von der Osten C. Production and use of protein variants having modified immunogenecity 2015, Retrieved December 20, 2015, from http://www.google.com/patents/WO2001083559A2.
  • 133. Haghighi B, Gorton L, Ruzgas T, Jönsson LJ. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Anal Chim Acta 2003, 487:3-14.
  • 134. Shleev S, Persson P, Shumakovich G, Mazhugo Y, Yaropolov A, Ruzgas T, Gorton L. Laccase-based biosensors for monitoring lignin. Enzyme Microb Technol 2006, 39:835-840.
  • 135. Palanisamy S, Ramaraj SK, Chen S-M, Yang T, Yi-Fan P, Chen T-W, Velusamy V, Selvam S. A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol. Sci Rep 2017, 7(41214):1-12.
  • 136. Medina-Plaza C, de Saja JA, Rodriguez-Mendez ML. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens Bioelectron 2014, 57:276-283.
  • 137. Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey AL, Ludwiq R, Shleev S, Alcalde M. Blood tolerant laccase by directed evolution. Chem Biol 2013, 20:223-231.
  • 138. Barrière F, Kavanagh P, Leech D. A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochimica Acta 2006, 51:5187-5192.
  • 139. Almeira I, Henriques F, Calvalho M, Viana A. Carbon disulfide mediated self-assembly of laccase and iron oxide nanoparticles on gold surfaces for biosensing applications. J Colloid Interface Sci 2017, 485:242-250.
  • 140. Sun J, Zheng M, Lu Z, Lu F, Zhang C. Heterologous production of a temperature and pH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochem 2017, in press, http://dx.doi.org/10.1016/j.procbio.2017.01.030.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0cabd2b0-54b3-4773-bc12-735d07b1299f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.