PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ship nonlinear roll motion identification using artificial neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solution of the nonlinear equation for a ship’s rotational motion around its longitudinal axis, even with simplifying assumptions, is complicated. This oscillatory motion, which is known as the roll motion, is generated when the ship sails in the waves, and the irregular behavior of the waves causes time-varying dynamics. Calculating the ship’s roll response is possible by determining roll equation coefficients. In the current study, the coefficients were determined from the dynamic response of the ship using a training feed-forward neural network. The training was carried out in two modes: as a free swing in calm water and forced oscillation in irregular waves. The DTMB 5415 vessel was selected as the case study ship. The results of the simulation by the neural network were validated by numerical analysis and model test results.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Malek Ashtar University of Technology, Maritime Engineering Department Esfahan, Iran
  • Malek Ashtar University of Technology, Mechanical Engineering Department Lavizan Ave., Tehran, Iran
  • Amirkabir University of Technology Marine Engineering Department
Bibliografia
  • 1. AlarÇÏn, F. (2007) Internal model control using neural network for ship roll stabilization. Journal of Marine Science and Technology 15, 2, pp. 141–147.
  • 2. Awad, T., Elgohary, M.A. & Mohamed, T.E. (2018) Ship roll damping via direct inverse neural network control system. Alexandria Engineering Journal 57, 4, pp. 2951–2960.
  • 3. Bhattacharyya, R. (1978) Dynamics of marine vehicles. New York: John Wiley & Sons.
  • 4. Ghassemi, H., Dadmarzi, F., Ghadimi, P. & Ommani, B. (2010) Neural network-PID controller for roll fin stabilizer. Polish Maritime Research 17(2), pp. 23–28.
  • 5. Hou, X.-R., Zou, Z.-J. & Liu, C. (2018) Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves. Applied Ocean Research 73, pp. 88–99.
  • 6. Irvine, M., Longo, J. & Stern, F. (2004) Towing Tank Tests for Surface Combatant for Free Roll Decay and Coupled Pitch and Heave Motions. Proceedings of the 25th ONR Symposium on Naval Hydrodynamics, St Johns, Canada.
  • 7. Jain, A.K., Mao, J. & Mohiuddin, K.M. (1996) Artificial neural networks: a tutorial. Computer 29, 3, pp. 31–44.
  • 8. Lewis, E.V. (1989) Principles of Naval Architecture. 2nd edition. SNAME.
  • 9. Mahfouz, A.B. (2004) Identification of the nonlinear ship rolling motion equation using the measured response at sea. Ocean Engineering 31, 17–18, pp. 2139–2156.
  • 10. Mousavi, S.M., Khoogar, A.R. & Ghassemi, H. (2020) Time Domain Simulation of Ship Motion in Irregular Oblique Waves. Journal of Applied Fluid Mechanics 13(2), pp. 549–559.
  • 11. Oskin, D.A., Dyda, A.A. & Markin, V.E. (2013) Neural network identification of marine ship dynamics. IFAC Proceedings Volumes 46, 33, pp. 191–196.
  • 12. Pérez, T. & Blanke, M. (2002) Simulation of Ship Motion in Seaway. Tech. rep EE02037.
  • 13. Xing, Z. & McCue, L. (2010) Modeling ship equations of roll motion using neural networks. Naval Engineers Journal 122, 3, pp. 49–60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ca9f257-fdab-42d1-a811-eadf91697693
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.