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Abstract: In this paper we show a simple and effective method for regularizing the Coulomb
potential for numerical calculations of quantum mechanical problems, such as, for example, the
solution of the Schrödinger equation, the expansion of charge density and others. The introduc-
tion explains why the regularization of the Coulomb potential is important. In the second part,
the regularization method itself as well as its advantages and disadvantages will be described
in detail. The third part demonstrates some numerical calculations for the Sulfur + Hydrogen
system using the proposed method. In the final part, the obtained results are summed up.
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1. Introduction
The numerical methods play an important role in scientific calculations,

especially for solving quantum mechanics and quantum chemistry problems. For
example, a precise solution of the Schrödinger equation is available only for
the case of one particle. Therefore, different methods such as the method of
diagonalization, the spectral method, the method of splitting, and many others,
are applied for solving quantum-mechanical problems with a large number of
degrees of freedom, see [1–3], for example. One of the most promising methods
is the Hartree-Fock method [4–6]. In the framework of this method, the problem
for many particles with a volume of calculations exponentially increasing with
the number of particles is reduced to a simplified problem with a volume of
calculations polynomial with respect to the number of particles.

We develop a program that solves the Schrödinger equation for quan-
tum-mechanical systems with a Coulomb interaction potential between nuclei
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and electrons. In a number of very simple cases, one has no problems with ana-
lytic solution of problems with the Coulomb potential. However, we always have
some problems with numerical solution of problems with the Coulomb potential,
since the Coulomb potential has the form 1

𝑟 , and this potential has a singularity
at 𝑟 → 0. 1

𝑟 tends to infinity when 𝑟 tends to 0. For example, when one tries to
calculate numerically such an integral with a singularity in the integrand apply-
ing the usual quadrature formulas and using the integrand values at the points
of some mesh, the computational error turns out to be very large. To avoid this,
first, we have to understand the integrals of functions with singularities as im-
proper integrals, and secondly, we have to apply special methods of numerical
integration, adapted to such dangerous behavior of the integrand functions. Such
special methods of special overdetermination of functions with singularities and
overdetermination of integrals of functions with singularities and special methods
of numerical computation of such dangerous integrals are called the general word
“regularization”.

In addition to the regularization technique of the Coulomb potential for cal-
culations of integrals for complex quantum-mechanical systems, now the so-called
pseudopotential method is applied and it is popular and looks promising [7–9].
Its essence consists in reducing the problem with many electrons and a nucleus
to a problem with only valence electrons and a core consisting of a nucleus and
all other electrons. Such technique is quite natural, since the main contribution
to the behavior of chemical elements in chemical reactions is determined by the
valence electrons of these elements. Thus, the fields of such introduced cores are
described by pseudopotentials.

We can make the assumption that the correct regularization of singularities,
together with the pseudopotential method, may yield a significant gain in the
computation of relatively complex quantum-mechanical systems.

Thus, in the first part of the paper we show a simple method for regularizing
the Coulomb potential. In the second part, we will test the working capacity of
this method on a simple example using the software written by us. In the final
part, we sum up the results of the paper.

2. Simple method of Coulomb potential regularization
As has been said, Coulomb potential has a singularity at 𝑟 → 0, 1

𝑟 → ∞. In
the 𝑟 = 0 point the function is undefined and its derivatives do not exist. Therefore,
the scalar product ⟨Ψ,𝐻̂Ψ⟩ cannot be understood in the usual sense, since the
usual integrals do not exist, since 1

𝑟 is a part of Hamiltonian 𝐻̂. Approximation
of the integral ⟨Ψ,𝐻̂Ψ⟩ with any usual quadratic formulas is incorrect.

In order to describe the essence of this mathematical difficulty more easily,
it is convenient to first consider the integral 𝐼 = ∫ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥 of a function of one

variable. We “approximate” this integral with the usual quadrature formula
𝑁−1
∑
𝑖=0

𝑓(𝜉𝑖)(𝑥𝑖+1 −𝑥𝑖), where 𝜉𝑖 ∈ [𝑥𝑖,𝑥𝑖+1], 𝑥0 = 𝑎, 𝑥𝑁 = 𝑏 (1)
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However, this “approximation” is valid only for smooth functions.
There are functions with integrable singularities among functions with

singularities. These are functions for which the integrals can be reasonably
redefined in such a way that integrals exist. Obviously, it is possible to propose
a numerical method for calculating such integrals. Let us consider, for example,
the integral

𝑏

∫
𝑎

𝑓(𝑥)𝜓(𝑥)𝑑𝑥 (2)

where 𝑓(𝑥) is a function with integrable singularity, and 𝜓(𝑥) is a smooth function.
Such an integral can be approximated with the expression

𝑏

∫
𝑎

𝑓(𝑥)𝜓(𝑥)𝑑𝑥 ≈
𝑁−1
∑
𝑖=0

𝜓(𝜉𝑖)

𝑥𝑖+1

∫
𝑥𝑖

𝑓(𝑥)𝑑𝑥, 𝜉𝑖 ∈ [𝑥𝑖,𝑥𝑖+1] (3)

It is assumed that the values of the integrals ∫ 𝑥𝑖+1

𝑥𝑖
𝑓(𝑥)𝑑𝑥 are known, and we

know and apply them.
We shall try to develop this idea and apply it to the calculation of integrals

of the form
∫

𝑅3

𝜌(𝑥́, ́𝑦, ́𝑧)
√(𝑥−𝑥́)2 +(𝑦− ́𝑦)2 +(𝑧 − ́𝑧)2

𝑑𝑥́𝑑 ́𝑦𝑑 ́𝑧 (4)

of functions with integrable singularity. We change the variables
𝑥″ = 𝑥́−𝑥, 𝑦″ = ́𝑦−𝑦, 𝑧″ = ́𝑧−𝑧 (5)

and transform the integral to some convenient standard form

∫
𝑅3

𝜌(𝑥″ +𝑥, 𝑦″ +𝑦, 𝑧″ +𝑧)
√𝑥″2 +𝑦″2 +𝑧″2

𝑑𝑥″𝑑𝑦″𝑑𝑧″ (6)

First of all, we note that it is possible to cut out a small neighborhood
Ω𝜀 of the small radius 𝜀 around the singular point (𝑥″,𝑦″,𝑧″) = (0,0,0) and
approcimately replace the integral (6) with a regular integral

∫
𝑅3/Ω𝜀

𝜌(𝑥″ +𝑥, 𝑦″ +𝑦, 𝑧″ +𝑧)
√𝑥″2 +𝑦″2 +𝑧″2

𝑑𝑥″𝑑𝑦″𝑑𝑧″ (7)

The integral (7) can be calculated numerically with ordinary means of numerical
calculations of integrals. Such a way is possible and justified in [10], but this way
is rather crude and leads to an unjustifiably large number of computations.

Suppose we have an Ω grid in the space 𝑅3 with nodes (𝑥″
𝑖 ,𝑦″

𝑗 ,𝑧″
𝑘). We

denote a cube with edge ℎ centered in the node (𝑖,𝑗,𝑘) node by 𝜔𝑖𝑗𝑘. Then we can
write

∫
𝑅3

𝜌(𝑥″ +𝑥, 𝑦″ +𝑦, 𝑧″ +𝑧)
√𝑥″2 +𝑦″2 +𝑧″2

𝑑𝑥″𝑑𝑦″𝑑𝑧″ ≈

∑
𝜔𝑖𝑗𝑘(ℎ)

𝜌(𝑥″
𝑖 +𝑥, 𝑦″

𝑗 +𝑦, 𝑧″
𝑘 +𝑧) ∫

𝜔𝑖𝑗𝑘(ℎ)

1
√𝑥″2 +𝑦″2 +𝑧″2

𝑑𝑥″𝑑𝑦″𝑑𝑧″
(8)
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Here the calculation of the integral

𝑏𝑖𝑗𝑘 = ∫
𝜔𝑖𝑗𝑘(ℎ)

1
√𝑥″2 +𝑦″2 +𝑧″2

𝑑𝑥″𝑑𝑦″𝑑𝑧″ (9)

is an obvious problem. We shall try to propose a simple and convenient procedure
for calculating the integral. It is obvious that far from the center of the coordinate
system

𝑏𝑖𝑗𝑘 ≈ 1
𝑟𝑖𝑗𝑘

ℎ3 (10)

where 𝑟𝑖𝑗𝑘 is the distance from the center of the coordinate system (0,0,0) to the
center of the cube 𝜔𝑖𝑗𝑘(ℎ). Therefore, it is only the calculation of these integrals
near the point (0,0,0) that might pose some difficulty.

We need to find such values 𝑎𝑖𝑗𝑘 that we can to write
𝑏𝑖𝑗𝑘 = 𝑎𝑖𝑗𝑘ℎ3 (11)

This makes it convenient to work with integrals, using formulas for their calcula-
tion similar to the usual quadrature formulas. In essence, 𝑎𝑖𝑗𝑘 is the proportiona-
lity coefficient between the value of the integral over the domain 𝜔𝑖𝑗𝑘(ℎ) and the
volume ℎ3 of the domain 𝜔𝑖𝑗𝑘(ℎ).

These coefficients of proportionality can be found approximately by calcu-
lating the integrals over domains of integration almost coinciding with 𝜔𝑖𝑗𝑘(ℎ),
but these domains of integration are such ones that the integrals can be calculated
accurately for them.

Let us begin with consideration of neighborhood of the center of the
coordinates system. Let’s compute the integral over the ball of 𝜀-radious:

𝜀

∫
0

1
𝑟″ 4𝜋𝑟″2𝑑𝑟″ = 2𝜋𝜀2 (12)

We divide the result (12) by the volume 4
3 𝜋𝜀3 of the ball and obtain the required

approximation
𝑎000 ≈ 3

2𝜀
(13)

Obviously, the question of areasonable choice of 𝜀 arises. This question will be
considered later. Now we only note that 𝜀 ≈ ℎ

2 should be included.
Now, we calculate an analogous averaging over the layer of a spherical

surface of thickness 2𝜀. The required integral over the layer of a spherical surface
of thickness 2𝜀 is equal to

𝑟+𝜀

∫
𝑟−𝜀

1
𝑟″ 4𝜋𝑟″2𝑑𝑟″ = 8𝜋𝑟𝜀 (14)

Let us divide the result by the volume 8
3 𝜋𝜀(3𝑟2 +𝜀2) of the spherical layer

of width 2𝜀. We get
𝑎𝑖𝑗𝑘 ≈

𝑟𝑖𝑗𝑘

𝑟2
𝑖𝑗𝑘 + 𝜀2

3
(15)

Here 𝑟𝑖𝑗𝑘 is the distance from the center to the node (𝑖,𝑗,𝑘).



Regularization of Coulomb Potential for Calculating Electron Density.̇. 181

Let us choose 𝜀 starting from the natural idea that the volume of our ball
of radius 𝜀 should be equal to the volume ℎ3 of the cube 𝜔𝑖𝑗𝑘(ℎ). We obtain the
equation

4
3

𝜋𝜀3 = ℎ3 (16)

Consequently,

𝜀 = ( 3
4𝜋

)
1/3

ℎ ≈ 0.6203504908ℎ (17)

This relation is satisfactory, since 𝜀 ≈ 0.5ℎ. And it will be natural in our technique
of computing 𝑎𝑖𝑗𝑘 to replace the cube 𝜔𝑖𝑗𝑘(ℎ) with a ball of an equal volume.

We note that a high accuracy of computing 𝑎𝑖𝑗𝑘 is not required, since the
main contribution to the integral for sufficiently small ℎ is given by those cubes
𝜔𝑖𝑗𝑘(ℎ) for which 𝑎𝐼𝑗𝑘 ≈ 1

𝑟𝑖𝑗𝑘
.

The proposed idea of calculating the integrals of functions with singulari-
ties 1

𝑟 can be transformed to a form convenient for practical use. We combine
the formulas (13) and (15) with the help of linear interpolation. As a result, the
formula (13) will be a special case for 𝑟 = 0, and the formula (15) will be a special
case for 𝑟 ≥ ℎ. Thus, we obtain the following convenient combined formula

𝑣(𝑟,ℎ) =
⎧{
⎨{⎩

3
2𝜀 − 𝑟

ℎ ( 3
2𝜀 − ℎ

ℎ2+ 𝜀2
3

) if 𝑟 ≤ ℎ
𝑟

𝑟2+ 𝜀2
3

if 𝑟 > ℎ
(18)

That is, the potential 1
𝑟 can be replaced with the potential (18) and can be treated

as a normal smooth nonsingular potential. The “potential” 𝑣(𝑟,ℎ) is continuous
and depends on the grid step ℎ. This dependence of the potential (18) on the step
ℎ is a good property because it adjusts the potential to the grid. See (17).

The introduced function is convenient because it is easily and flexibly
applied to the grid and allows us to consider conveniently the potential of
a charged particle located at any point of space.

3. Practical implementation
We use this method in the program (see the block-scheme in Figure 1) for

calculation of the electron density of a quantum system 𝑆3+ +𝐻+ (for more detail
see [11–13]). At this instant, we just take the potential of 𝑆3+ as the potential of
a hydrogen-like atom multiplied by 3. The methods of pseudopotentials are not
used in this paper, but we intend to apply them in future.

Thus, the program solves the Schrödinger equation numerically by the suc-
cessive over-relaxation method – SOR [14]. In this example, the fast convergence
of the iterative procedure is achieved at the mesh with 40-55 nodes along each
coordinate axis.

As one can see in Figure 2–3, the new potential (18) describes the quantum
system at various distances precisely enough.
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Figure 1. Block-Scheme of a program

if 𝑟 ≤ ℎ then 𝑉1 = 3
2𝜀 − 𝑟

ℎ ( 3
2𝜀 − ℎ

ℎ2+ 𝜀2
3

), else 𝑉2 = 𝑟
𝑟2+ 𝜀2

3
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(a) (b)

(c) (d)

Figure 2. Stationary electron density distribution depending on the distance between
potentials centers in 3D

(a) (b)

(c) (d)

Figure 3. Stationary electron density distribution depending on the distance between
potentials centers in 2D
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4. Discussion and conclusions
In this paper we have shown that there is a relatively simple and convenient

way in numerical calculations of quantum chemical processes performed on
a computer to avoid problems due to the singularity of the Coulomb potential.
We suppose it is important, since calculations with many standard methods are
impossible at the singular point, and lead to significant computational errors
near the singularity. The closer we are to the singularity point, the larger the
computational error.
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