PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Usefulness of the Modified NRCS-CN Method for the Assessment of Direct Runoff in a Mountain Catchment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the usefulness of modified methods, developed on the basis of NRCS-CN method, in determining the size of an effective rainfall (direct runoff). The analyses were performed for the mountain catchment of the Kamienica river, right-hand tributary of the Dunajec. The amount of direct runoff was calculated using the following methods: (1) Original NRCS-CN model, (2) Mishra- Singh model (MS model), (3) Sahu-Mishra-Eldho model (SME model), (4) Sahu 1-p model, (5) Sahu 3-p model, and (6) Q_base model. The study results indicated that the amount of direct runoff, determined on the basis of the original NRCS-CN method, may differ significantly from the actually observed values. The best results were achieved when the direct runoff was determined using the SME and Sahu 3-p model.
Czasopismo
Rocznik
Strony
1423--1446
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, Kraków, Poland
autor
  • Department of Applied Mathematics, University of Agriculture in Krakow, Kraków, Poland
Bibliografia
  • 1. Banasik, K., and D.E. Woodward (2010), Empirical determination of runoff curve number for a small agricultural watershed in Poland. In: 2nd Joint Federal Interagency Conference, 27 June - 1 July 2010, Las Vegas, USA.
  • 2. Caviedes-Voullième, D., P. García-Navarro, and J. Murillo (2012), Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events, J. Hydrol. 448-449, 39-59, DOI: 10.1016/j.jhydrol.2012.04.006.
  • 3. Chauhan, M.S., V. Kumar, and A.K. Rahul (2013), Modelling and quantifying water use efficiency for irrigation projectand water supply at large scale, Int. J. Adv. Sci. Tech. Res. 3, 5, 617-639.
  • 4. Cunha, L.K., W.F. Krajewski, R. Mantilla, and L. Cunha (2011), A framework for flood risk assessment under nonstationary conditions or in the absence of historical data, J. Flood Risk Manag. 4, 3-22, DOI: 10.1111/j.1753-318X.2010.01085.x.
  • 5.Deshmukh, D.S., U.C. Chaube, A.E. Hailu, D.A. Gudeta, and M.T. Kassa (2013), Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope, J. Hydrol. 492, 89-101, DOI: 10.1016/j.jhydrol.2013.04.001.
  • 6. Ebrahimian, M., A.A.B. Nuruddin, M.A.B.M. Soom, A.M. Sood, and L.J. Neng (2012), Runoff estimation in steep slope watershed with standard and slope-adjusted curve number methods, Pol. J. Environ. Stud. 21, 5, 1191-1202.
  • 7. Efstratiadis, A., A.D. Koussis, D. Koutsoyiannis, and N. Mamassis (2014), Flood design recipes vs. reality: can predictions for ungauged basins be trusted? Nat. Hazards Earth Syst. Sci. 14, 1417-1428, DOI: 10.5194/nhess-14-1417-2014.
  • 8. Fan, F., Y. Deng, X. Hu, and Q. Weng (2013), Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China, Remote Sens. 5, 3, 1425-1438, DOI: 10.3390/rs5031425.
  • 9. Garen, D.C., and D.S. Moore (2005), Curve number hydrology in water quality modeling: uses, abuses, and future directions, J. Am. Water Resour. Assoc. 41, 2, 377-388, DOI: 10.1111/j.1752-1688.2005.tb03742.x.
  • 10. Geetha, K., S.K. Mishra, T.I. Eldho, A.K. Rastogi, and R.P. Pandey (2007), Modifications to SCS-CN method for long-term hydrologic simulation, J. Irrig. Drain. Eng. 133, 5, 475-486, DOI: 10.1061/(ASCE)0733-9437(2007)133:5(475).
  • 11. Grimaldi, S., A. Petroselli, and N. Romano (2013), Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins, Hydrol. Process. 27, 8, 1253-1264, DOI: 10.1002/hyp.9303.
  • 12. Hawkins, R.H., A.T. Hjelmfelt Jr., and A.W. Zevenbergen (1985), Runoff probability, storm depth, and curve numbers, J. Irrig. Drain. Eng. 111, 4, 330-340, DOI: 10.1061/(ASCE)0733-9437(1985)111:4(330).
  • 13. Hong, Y., and R.F. Adler (2008), Estimation of global SCS curve numbers using satellite remote sensing and geospatial data, Int. J. Remote Sens. 29, 2, 471-477, DOI: 10.1080/01431160701264292.
  • 14. Kabiri, R., A. Chan, and R. Bai (2013), Comparison of SCS and Green-Ampt methods in surface runoff-flooding simulation for Klang watershed in Malaysia, Open J. Modern Hydrol. 3, 3, 102-114, DOI: 10.4236/ojmh.2013.33014.
  • 15. Krzanowski, S., A.T. Miler, and A. Wałęga (2013), The effect of moisture conditions on estimation of the CN parameter value in the mountain catchment, Infrastruc. Ecol. Rural Areas 3, 4, 105-117 (in Polish).
  • 16. Maidmend, D.R. (1993), Handbook of Hydrology, McGraw-Hill, New York, 1424 pp.
  • 17. McCuen, R.H. (2003), Modeling Hydrologic Change: Statistical Methods, Lewis Publishers/CRC Press, Boca Raton.
  • 18. Merz, R., and G. Blöschl (2009), A regionalanalysis of event runoff coefficients with respect to climate and catchment characteristics in Austria, Water Resour. Res. 45, 1, W01405, DOI: 10.1029/2008WR007163.
  • 19. MHP (2005), Application of Hydrologic Methods in Maryland. Report, Maryland Hydrology Panel, The Maryland State Highway Administration and The Maryland Department of the Environment, Baltimore, USA.
  • 20. Michel, C., V. Andréassian, and C. Perrin (2005), Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure, Water Resour. Res. 41, 2, 1-6, W02011, DOI: 10.1029/2004WR003191.
  • 21. Miler, A.T. (2012), Influence of land use changes to flood outflows from areas with large afforestation of the Roztocze Środkowe, Infrastruc. Ecol. Rural Areas 2, 1, 173-182 (in Polish).
  • 22. Mishra, S.K., and V.P. Singh (2002), SCS-CN-based hydrologic simulation package. In: V.P. Singh and D.K. Frevert (eds.), Mathematical Models of Small Watershed Hydrology and Applications, Water Resources Publs., LLC, High-lands Ranch, 391-464.
  • 23. Mishra, S.K., and V.P. Singh (2003a), Soil Conservation Service Curve Number (SCS-CN) Methodology, Kluwer Academic Publ., Dordrecht.
  • 24. Mishra, S.K., and V.P. Singh (2003b), Derivation of the SCS-CN parameter S from linearized Fokker-Planck equation, Acta Geophys. Pol. 51, 2, 179-202.
  • 25. Mishra, S.K., M.K. Jain, P.K. Bhunya, and V.P. Singh (2005), Field applicability of the SCS-CN-based Mishra-Singh general model and its variants, Water Resour. Manag. 19, 1, 37-62, DOI: 10.1007/s11269-005-1076-3.
  • 26. Mishra, S.K., S. Gajbhiye, and A. Pandey (2013), Estimation of design runoff curve numbers for Narmada watersheds (India), J. Appl. Water Eng. Res. 1, 1, 69-79, DOI: 10.1080/23249676.2013.831583.
  • 27. Moriasi, D.N., J.G. Arnold, M.W. van Liew, R.L. Bingner, R.D. Harmel, and T.L. Veith (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. Am. Soc. Agricult. Biol. Eng. 50, 3, 885-900.
  • 28. Nash, J.E., and J.V. Sutcliffe (1970), River flow forecasting through conceptual models: Part I - A discussion of principles, J. Hydrol. 10, 3, 282-290, DOI: 10.1016/0022-1694(70)90255-6.
  • 29. Petroselli, A., S. Grimaldi, and N. Romano (2013), Curve-Number/Green-Ampt mixed procedure for net rainfall estimation: A case study of the Mignone watershed, IT, Procedia Environ. Sci. 19, 113-121, DOI: 10.1016/j.proenv. 2013.06.013.
  • 30. Ponce, V.M. (1989), Engineering Hydrology: Principles and Practices, Prentice Hall, Englewood Cliffs.
  • 31. Ponce, V.M., and R.H. Hawkins (1996), Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1, 1, 11-19, DOI: 10.1061/(ASCE)1084-0699(1996)1:1(11).
  • 32. Sahu, R.K., S.K. Mishra, T.I. Eldho, and M.K. Jain (2007), An advanced soil moisture accounting procedure for SCS curve number method, Hydrol. Process. 21, 21, 2872-2881, DOI: 10.1002/hyp.6503.
  • 33. Sahu, R.K., S.K. Mishra, and T.I. Eldho (2010), An improved AMC-coupled runoff curve number model, Hydrol. Process. 24, 20, 2834-2839, DOI: 10.1002/hyp.7695.
  • 34. Sahu, R.K., S.K. Mishra, and T.I. Eldho (2012), Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India, ISH J. Hydraul. Eng. 18, 1, 27-36, DOI: 10.1080/09715010.2012.662425.
  • 35. SCS (1956), SCS National Engineering Handbook. Section 4. Hydrology. Supplement A, Chp. 10, Soil Conservation Service, US Dept. of Agriculture, Washington, USA.
  • 36. Smith, R.E., and J.R. Williams (1980), Simulation of the surface water hydrology. In: W.G. Knisel (ed.), CREAMS: A Field-scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, Conservation Research Report No. 26, US Dept. of Agriculture, Washington, USA, 165-192.
  • 37. Váňová, V., and J. Langhammer (2011), Modelling the impact of land cover changes on flood mitigation in the upper Lužnice basin, J. Hydrol. Hydromech. 59, 4, 262-274, DOI: 10.2478/v10098-011-0022-8.
  • 38. Wałęga, A., A. Cupak, and W. Miernik (2011), Influence of entrance parameters on maximum flow quantity receive from NRCS-UH model, Infrastruc. Ecol. Rural Areas 7, 85-95 (in Polish).
  • 39. Wałęga, A., E. Drożdżal, M. Piórecki, and R. Radoń (2012), Some problems of hydrology modelling of outflow from ungauged catchments with aspects of flood maps design, Acta Scient. Polon. Format. Circum. 11, 3, 57-68 (in Polish).
  • 40. Woodward, D.E., C.C. Hoeft, R.H. Hawkins, J. van Mullem, and T.J. Ward (2010), Discussion of “Modifications to SCS-CN method for long-term hydrologic simulation” by K. Geetha, S.K. Mishra, T.I. Eldho, A.K. Rastogi, and R.P. Pandey, J. Irrig. Drain. Eng. 136, 6, 444-446, DOI: 10.1061/(ASCE) IR.1943-4774.0000231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ca32b42-83ae-42d9-9468-c33fa7350cbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.