PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Element Modelling for Tensile Behaviour of Thermally Bonded Nonwoven Fabric

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nonwoven fabric has been widely used in geotextile engineering in recent years; its tensile strength is an important behaviour. Since the fibre distributions in nonwoven fabrics are random and discontinuous, the unit-cell model of a nonwoven fabric cannot be developed to simulate its tensile behaviour. This article presents our research on using finite element method (FEM) to study the tensile behaviour of a nonwoven fabric in macro-scale based on the classical laminate composite theory. The laminate orientation was considered with orientation distribution function of fibres, which has been obtained by analysing the data acquired from scanning electron microscopy with Hough Transform. The FE model of a nonwoven fabric was developed using ABAQUS software; the required engineering constants of a nonwoven fabric were obtained from experimental data. Finally, the nonwoven specimens were stretched along with machine direction and cross direction. The experimental stress-strain curves were compared with the results of FE simulations. The approximate agreement proves the validity of an FE model, which could be used to precisely simulate the stress relaxation, strain creep, bending and shear property of a nonwoven fabric.
Rocznik
Strony
48--53
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Inner Mongolia University of Technology, College of Light Industry and Textile, Hohhot, Inner Mongolia 010080, China +864713603443
autor
  • Inner Mongolia University of Technology, College of Light Industry and Textile, Hohhot, Inner Mongolia 010080, China +864713603443
Bibliografia
  • [1] Rawal A, Priyadarshi A, Kumar N, Lomov S.V, Verpoest I. Tensile behaviour of nonwoven structures: comparison with experimental results. (2010). Journal of Materials Science, 45(24): 6643-6652.
  • [2] Hou X.N, Acar M, Silberschmidt V.V. Finite element simulation of low-density thermally bonded nonwoven materials: Effects of orientation distribution function and arrangement of bond points. (2011). Computational Materials Science, 50(4): 1292-1298.
  • [3] Ridruejo A, González C, Llorca J. Micromechanisms of deformation and fracture of polypropylene nonwoven fabrics. (2011). International Journal of Solids and Structures, 48(1): 153-162.
  • [4] Gautier K.B, Kocher C.W, Drean J.Y. Anisotropic mechanical behavior of nonwoven geotextiles stressed by uniaxial tension. (2007). Textile Research Journal, 77(1): 20-28.
  • [5] Kim H.S. Relationship between fiber orientation distribution function and mechanical anisotropy of thermally pointbonded nonwovens. (2004). Fibers and Polymers, 5(3): 177-181.
  • [6] Demirci E, Acar M, Pourdeyhimi B, Silberschmidt V.V. Computation of mechanical anisotropy in thermally bonded bicomponent fibre nonwovens. (2012). Computational Materials Science, 52(1): 157-163.
  • [7] Hou X.N, Acar M, Silberschmidt V.V. 2D finite element analysis of thermally bonded nonwoven materials: Continuous and discontinuous models. (2009). Computational Materials Science, 46(3): 700-707.
  • [8] Villard P, Chevalier B, Hello L.B, Combe G. Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic. (2009). Computers and Geotechnics, 36(5): 709-717.
  • [9] Mueller D.H, Kochmann M.M. Neumerical Modeling of Thermobonded Nonwovens. (2004) International Nonwovens Journal, 13(1): 56-62.
  • [10] Limem S, Warner S.B. Adhesive point-bonded spunbond fabrics. (2005). Textile Research Journal, 75(1): 63-72.
  • [11] Demirci E, Acar M, Pourdeyhimi B, Silberschmidt V.V. Finite element modelling of thermally bonded bicomponent fibre nonwovens: Tensile behaviour. (2011) Computational Materials Science, 50(4): 1286-1291.
  • [12] Smita B.S, Sherrill B.B, Goswami B.C. Finite element modeling of the nonuniform deformation of spun-bonded nonwovens. (1998). Textile Research Journal, 68(5): 327- 342.
  • [13] Backer S, Petterson D.R. Some Principles of Nonwoven Fabrics. (1960). Textile Research Journal, 30(9): 704-711.
  • [14] Kim H.S. Orthotropic theory for the prediction of mechanical performance in thermally point-bonded nonwovens. (2004). Fibers and Polymers, 5(2): 139-144.
  • [15] Xu B.G, Yu L. Determining fiber orientation distribution in nonwovens with Hough transform techniques. (1997). Textile Research Journal, 67(8): 563-571.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ca129ca-126c-4db2-86c6-165f176e1c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.