PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal Friction Study on the Influence of Pre-Deformation on Hydrogen Embrittlement Sensitivity of Dual-Phase Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an electrochemical method was used to permeate hydrogen through annealed DP590 steel under various pre-strain conditions (0-15%). Stress-strain and internal friction-temperature curves of the dual phase (DP) steel were obtained from slow strain-rate tensile tests and internal friction measurements, respectively. The diffusion of interstitial atoms, formation of Cottrell atmospheres, and embrittlement mechanism of DP steel were investigated under different prestress conditions before and after hydrogen permeation. The results show that the tensile strength of DP steel first decreases and then increases and the elongation sharply decreases with increasing pre-strain. The strength and ductility present similar trends with changes in pre-strain before and after hydrogen charging, however, after hydrogen charging, an obvious increase in tensile strength and decrease in elongation are observed. Furthermore, the γ peak amplitude decreases and the Snoek-Ke-Koster (SKK) peak amplitude increases with increasing internal pre-strain according to the friction-temperature curve. The γ peak and SKK peak exhibit the same trends with increasing pre-strain before and after hydrogen charging and both the γ peak and SKK peak decrease with hydrogen charging. The dislocation density in DP steel increases after hydrogen charging.
Twórcy
autor
  • University of Science and Technology Liaoning, School of Materials and Metallurgy, Anshan Liaoning, 114051, China
  • State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
autor
  • University of Science and Technology Liaoning, School of Materials and Metallurgy, Anshan Liaoning, 114051, China
  • State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
autor
  • State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
autor
  • University of Science and Technology Liaoning, School of Materials and Metallurgy, Anshan Liaoning, 114051, China
  • State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
autor
  • University of Science and Technology Liaoning, School of Materials and Metallurgy, Anshan Liaoning, 114051, China
  • State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan Liaoning, 114009, China
autor
  • Shenyang Ligong University, School of Material Science and Engineering, Shenyang Liaoning, 110159, China
Bibliografia
  • [1] C.Q. Xie, G. Wang, Y. Han, Research on hydrogen induced delayed cracking behavior of 780 MPa grade dual phase steel for automotive, Hot Working Technol. 47, 74-77 (2018).
  • [2] T. Depover, E. Wallaert, K. Verbeken, Fractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibility of DP steel, Mater. Sci. Eng. A 64, 9201-208 (2016).
  • [3] J. Chen, C.J. Li, S.H. Zhang, Hydrogen embrittlement of cold drawn F+M dual-phase Steel, Chinese J. Eng. 12, 339-343 (1990).
  • [4] T. Depover, F. Vercruysse, A. Elmahdy, P. Verleysen, K. Verbeken, Evaluation of the hydrogen embrittlement susceptibility in DP steel under static and dynamic tensile conditions, Int. J. Impact. Eng. 123, 118-125 (2019).
  • [5] X.F. Yuan, Study on internal friction and mechanical properties of TRIP steel after hydrogen charging, Univ. Sci. Technol. Liaoning, 2018.
  • [6] J.A. Ronevich, J.G. Speer, D.K. Matlock, Hydrogen embrittlement of commercially produced advanced high strength sheet steels, Sae Int. J. Mater. Manuf. 3, 255-267 (2010).
  • [7] T.S. Ge, B.C. Rong, Internal friction peak associated with the presence of hydrogen in steel, Chinese J. Phys. 10, 153-169 (1954).
  • [8] R. Cantelli, F.M. Mazzolai, M. Nuovo, Internal friction due to long-range diffusion of hydrogen and deuterium in vanadium, J. Phys. Chem. Solids. 31, 1811-1817 (1970).
  • [9] J. Zhang, X.Y. Li, M. Zhao, L.J. Rong, Effects of grain-boundary phases on hydrogen embrittlement of Fe-Ni-Cr austenitic alloys, Acta Metall. Sin. 44, 1095-1098 (2008).
  • [10] W.J. Li, S.S. Zhao, H.Y. Zhang, Relationship between bake hardening, Snoek-Köster and dislocation-enhanced snoek peaks incoarse grained low carbon steel, Arch. Metall. Mater. 61, 1723-1732 (2016).
  • [11] X.F. Yuan, W.J. Li, Q.H. Pang, Study on the performance and strain aging behavior of solid-solution state low-carbon steel, Mater. Sci. Eng. A 726, 282-287 (2018).
  • [12] W.J. Li, M.Y. Cai, D. Wang, J.W. Zhang, S.S. Zhao, Studying on tempering transformation and internal friction for low carbon bainitic steel, Mater. Sci. Eng. A 679, 410-416 (2018).
  • [13] W.Y. Zhu, Hydrogen embrittlement and Stress corrosion cracking, Beijing: Sci. Press 2013.
  • [14] M. Devanathan, Z. Stachurski, W. Beck, A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths, J. Electrochem. Soc. 110, 886- 890 (1963).
  • [15] X.C. Ren, W.Y. Chu, J.X. Li, L.J. Qiao, Y.J. Su, Effect of MnS inclusions on hydrogen diffusion in steel, J. Univ. Sci. Technol. Beijing 29, 232-236 (2007).
  • [16] C.Q. Xie, Y. Han, S. Kuang, Research on hydrogen induced delayed cracking behavior of 590 MPa grade dual phase steel for automotive, Hot Working Technol. 46, 104-107 (2017).
  • [17] i.C. Jung, D.G. Kang, B.C.D. Cooman, Impulse excitation internal friction study of dislocation and point defect interactions in ultra-low carbon bake-hardenable steel, Metall. Mater. Trans. A. 45, 1962-1978 (2014).
  • [18] L.J. Baker, J.D. Parker, S.R. Daniel, The use of internal friction techniques as a quality control tool in the mild steel industry, J. Mater. Process. Technol. 143, 442-447 (2003).
  • [19] H. Mizubayashi, H. Kronmüller, A. Seeger, The ν peak in deformed high-purity α-iron studied by forced vibrations out of resonance, Le J. de Phys. Coll. 46, C10-C309 (1985).
  • [20] M. Shimada, K. Sakamoto. Internal friction of α-iron deformed at low temperatures, Scripta Metal. 13, 1177-1182 (1979).
  • [21] S. Li, L. Deng, X. Wu, The mechanism investigation of deep cryogenic treatment on high alloy martensitic steel by low frequency internal friction, Cryogenics. 50, 433-438 (2010).
  • [22] J.S. Juan, G. Fantozzi, M.L. No, C. Esnouf, Hydrogen Snoek-Koster relaxation in iron, J. Phys. F. 17, 837-848 (1987).
  • [23] D. Brunner, J. Diehl, Strain-Rate and temperature dependence of the tensile flow stress of high-purity α-iron above 250 K (regime i) studied by means of stress-relaxation tests, Phys. Status Solidi (a). 124, 155-170 (1991).
  • [24] A. Seeger, C. Wüthrich, Dislocation relaxation processes in body-centred cubic metals, Nuovo Cim. B 33, 38-75 (1976).
  • [25] S.Z. Ke, J. Liu, F. Huang, Z. Wang, Y.J. Bi, Effect of pre-strain on hydrogen embrittlement susceptibility of DP600 steel, J. Chin. Soc. Corros. Prot. 38, 424-430 (2018).
  • [26] D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel, Acta Mater. 60, 2593 (2012).
  • [27] G.A. Young Jr, J.R. Scully, The diffusion and trapping of hydrogen in high purity aluminum, Acta Mater. 46, 6337 (1998).
Uwagi
1. This study was funded by the national natural Science Foundation of China (Grant No. 52004122), the State Key Laboratory of Marine Equipment made of Metal Material and Application (Grant No. SKLMEA-USTL-201907), the Guidance plan of Natural Science Foundation of Liaoning Province (Grant No. 2019-ZD-0028 and 2020JH1/10100001), and the Key Projects from Liaoning Education Department (Grant No. 2019FWDF03 and 2020LNQN19 ).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c9d2b09-69c3-43dc-8767-684ac68142ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.