PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State of the art in technologies of the biogas production increasing during methane digestion of sewage sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd technologii intensyfikacji produkcji biogazu podczas fermentacji metanowej osadów ściekowych
Języki publikacji
EN
Abstrakty
EN
At present many WWTPs are focused on increasing quantity of biogas generated during sewage sludge processing. Various disintegration methods can be used for this purpose – thermal heating, ultrasonic disintegration, chemical treatment. The limiting step in sewage sludge digestion is hydrolysis, increasing the rate of this process allows for shortening solids retention time in digester, increasing soluble COD concentration in the reject water and as a result also biogas production. In technical scale ultrasonic and thermal disintegration are used. The most effective are ultrasounds below 100 Hz. In thermal conditioning various technological parameters are applied (from 60 – 80°C to even 250°C, retention times from 15 min. to 2 hours). Effectiveness of the processes can be increased by using combined processes, e.g. thermal treatment and chemical stabilization. Chemical methods are at present mainly applied in laboratory scale. They include alkaline and acidic pretreatment or advanced chemical oxidation methods.
PL
Obecnie wiele oczyszczalni ścieków zainteresowanych jest zwiększaniem produkcji biogazu powstającego podczas stabilizacji osadów ściekowych. W tym celu mogą być wykorzystywane różne metody dezintegracji: termiczne, ultradźwiękowe lub chemiczne. Limitującym etapem procesu fermentacji metanowej jest hydroliza. Poprzez zwiększenie szybkości hydrolizy uzyskuje się skrócenie czasu zatrzymania osadów w komorze fermentacyjnej oraz zwiększenie zawartości rozpuszczalnego ChZT w cieczy osadowej, a w rezultacie zwiększenie produkcji biogazu. W skali technicznej dotychczas były wykorzystywane ultradźwięki oraz metody termiczne. Największą efektywność uzyskuje się stosując ultradźwięki o częstotliwości poniżej 100 Hz. W przypadku dezintegracji termicznej stosowane są zróżnicowanie parametry technologiczne (od 60 - 80°C do nawet 250°C, czas obróbki od 15 min. do 2 godz.). Efektywność procesu może być zwiększona przez zastosowanie kombinacji procesów, np. termicznych i chemicznych. Metody dezintegracji chemicznej są obecnie stosowane przede wszystkim w skali laboratoryjnej. Do metod chemicznych zaliczamy obróbkę kwasami, alkaliami oraz zaawansowane procesy utleniania.
Rocznik
Strony
64--76
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
  • Czestochowa University of Technology, Częstochowa, Poland
  • Czestochowa University of Technology, Częstochowa, Poland
Bibliografia
  • 1. Kijo-Kleczkowska A., Otwinowski H., Środa K., Properties and production of sewage sludge In Poland with reference to the methods of neutralizing, Archives of Waste Management and Environmental Protection, 14, 4, 59 – 78 (2012).
  • 2. Fytyli D., Zabaniatou A., Utilization of sewage sludge in EU application of old and new methods – a review, Renewable and Sustainable Energy Reviews, 12, 116–140 (2008).
  • 3. Benatti C.T., Tavares C., Filho B., Moitinho M., Operation of a slow rate anaerobic digester treating municipal secondary sludge, Electronic Journal of Biotechnology, 5, 3 (2002).
  • 4. Malina J.F., Pohland F.G., Design of anaerobic process for the treatment of industrial and municipal wastes, Water Quality Management Library, 7, (1992).
  • 5. Heidrich Z., Witkowski A., Urządzenia do oczyszczania ścieków. Projektowanie przykłady obliczeń, Wydawnictwo Seidel-Przywecki, Warszawa (2005).
  • 6. Batziaka V., Fytianos K., Voundrias E., Leaching of nitrogen, phosphorus, TOC and COD from the biosolids of the municipal wastewater treatment plant of Thessaloniki, Environment Monitoring and Assesment, 140, 331–338 (2008).
  • 7. Sadecka Z., Bocheński D., Myszograj S., Suchowska-Kisielewicz M., Green energy from biogas in a Polish-German sewage treatment plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 35, 13, 1249-1255, (2013).
  • 8. Sadecka Z., Weiss E., Myszograj S., Processing of sewage sludge with energy recovery in a wastewater treatment plant, Environment Protection Engineering, 38, 3, 97-105, (2012).
  • 9. Myszograj S., Biochemical methane potential as indicator of biodegradability of organic matter in anaerobic digestion process, Annual Set the Environmental Protection (Rocznik Ochrona Środowiska), 13, 2, 1245-1259, (2011).
  • 10. Kardos L., Juhász A., Palkó Gy., Oláh J., Barkács K., ZáRay Gy., Comparising of mesophilic and thermophilic anaerobic fermented sewage sludge based on chemical and biological tests, Applied Ecology and Environmental Research, 9, 3, 293 – 302 (2011).
  • 11. Buraczewski G., Bartoszek B., Biogas – generation and usage, Polish Scientific Publishing House PWN, Warszawa (1990).
  • 12. Neczaj E., Grosser A., Worwąg M., Boosting production of methane from sewage sludge by addition of grease trap sludge, Environment Protection Engineering, 39, 2, 125 – 133 (2013).
  • 13. Davidsson A., Lövstedt C., LaCour Jensen J., Gruvberger C., Aspergen H., Codigestion of grease trap sludge and sewage sludge, Waste Management, 28, 986 - 992 (2008).
  • 14. Luostarinen S., Luste S., Sillanpää M., Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant, Bioresource Technology, 100, 79-85 (2009).
  • 15. E. J. Martínez, M. V. Gil, C. Fernandez, J. G. Rosas, X. Gómez, Anaerobic Codigestion of Sludge: Addition of Butcher’s Fat Waste as a Cosubstrate for Increasing Biogas Production, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153139.
  • 16. Tiehm A., Nickel K., Neis U., The use of ultrasound to accelerate the anaerobic digestion of sewage sludge, Water Science and Technology, 36, 121–128 (1997).
  • 17. Appels L., Dewil R., Baeyens J., Ultrasonically enhanced anaerobic digestion of sludge, International Journal of Sustainable Engineering, 1, 2, 94–104 (2008).
  • 18. Navaneethan N., Anaerobic digestion of waste activated sludge with ultrasonic pretreatment, MsE Thesis, Asian Institute of Technology, School of Environment, Resources and Development, Thailand (2007).
  • 19. Farooq R., Rehman F., Baig S., Sadique M., Khan S., Farooq U., Rehman A., Faroog A., Pervez A., Mukhtar-ul-Hassan, Shaukat S.F., The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge, World Applied Sciences Journal, 6, 2, 234–237 (2009).
  • 20. Davidsson A., La Cour Jansen J., Pre-treatment of wastewater sludge before anaerobic digestion – hygenisation, ultrasonic treatment and enzyme dosing, Vatten, 62, 4, 335-340 (2006).
  • 21. Zafar S., Ultrasonic pretreatment in anaerobic digestion, http://www.bioenergyconsult.com/ultrasonic-pretreatment-ad-sewage/.
  • 22. Topal M., Arskan E., Thermal conditioning of sludges, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, 1-2, 108–119 (2009).
  • 23. Ruiz-Hernando M., Martinez-Elorza G., Labanda J., Llorens J., Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments, Chemical Engineering Journal, http://dx.doi.org/10.1016/j.cej.2013.06.046.
  • 24. Lue-Hing C., Zenz D.R., Tata P., Kuchenrither R., Malina J.F., Sawyer B., Municipal sewage sludge management: a reference text on processing, utilization and disposal, Water Quality Management Library, Vol. 4, Technomic Publishing Company Inc., Lancaster (1998).
  • 25. Kepp U., Machenbach I., Weisz N., Solheim O. E., Enhanced stabilization of sewage sludge through thermal hydrolysis – three years of experience with full scale plant, http://www.cambi.no/photoalbum/view2/P3NpemU9b3JnJmlkPTIyMDAyM iZ0eXBlPTE
  • 26. Zhang L., Zhang Y., Zhang Q., Verpoort F., Cheng W., Cao L., Meng L., Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process, Journal of the Energy Institute, http://dx.doi.org/10.1016/j.joei.2014.03.016.
  • 27. Barański M., Zawieja I. Wolski P., Effect of thermo-ultrasonic disintegration of excess sludge on the effectiveness of anaerobic stabilization process, Proceedings of ECOpole, DOI: 10.2429/proc.2012.6(1)002.
  • 28. Myszograj S., Produkcja biogazu z osadów nadmiernych i odpadów komunalnych dezintegrowanych termicznie, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra (2017).
  • 29. https://www.veoliawatertechnologies.co.uk/technologies/thermal-hydrolysis30. Neyens E., Bayens J., Areview of classic Fenton’s peroxidation as andvanced oxidation technique, Journal of Hazardous Materials, B98, 33–50 (2003).
  • 31. Janosz-Rajczyk M., Wiśniowska E., Leaching of organic and inorganic micropollutants from chemically stabilized sewage sludge – OFMSW mixture, Chemical Papers, 59, 6b, 453–457 (2005).
  • 32. Rocher M., Goma G., Gegue A., Louvel L., Rolls J.L., Towards a reduction in excess sludge production in activated sludge process, biomass physicochemical treatment and biodegradation, Applied Microbiology and Biotechnology, 51, 883–890 (1999).
  • 33. Cassini S.T., Andrade M.C., Abreu T.A., Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: effect on total EPS and fractions, Water Science and Technology, 53, 51 – 58 (2006).
  • 34. Banu J.R., Khac U.D., Kumar S.A., Ick-Tae Y., Kaliappan S., A novel method of sludge pretreatment using the combination of alkalis, Journal of Environmental Biology, 33, 2, 249–253 (2012).
  • 35. Lin Y., Wang D., Wu S., Wang C., Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge, Journal of Hazardous Materials, 170, 1, 366-373 (2009).
  • 36. Spyridon A., Vasileios A., Gerrit J.W. E., A Technological Overview of Biogas Production from Biowaste. Engineering, 3, 299-307 (2017).
  • 37. Kim D., Jeong E., Oh S., Shin H., Combined (alkaline + ultrasonic) pretreatment effect on sewage sludge disintegration, Water Research, vol. 44, issue 10, 3093–3100 (2010).
  • 38. Penaud V., Delegenés J.P., Moletta R., Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability, Enzyme and Microbial Technology, 25, 258–263(1999).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c9b6559-0f09-49e5-b029-c8889b9b3d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.