PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alternative method of making electrical connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we propose a new method for manufacturing busbars in photovoltaic modules for different solar cell generations, focusing on 1st and 3rd generations. The method is based on high-pressure spray coating using nanometric metallic powder. Our focus is primarily on optimizing conductive paths for applications involving conductive layers used in 3rd generation solar cells, such as quantum dot solar cell, dye-sensitized solar cell, and silicon-based solar cells on glass-glass architecture for buildingintegrated photovoltaic. The advantages of the proposed method include the possibility of reducing the material quantity in the conductive paths and creating various shapes on the surface, including bent substrates. This paper examines the influence of the proposed high-pressure spraying technique using metallic particles on the morphology of the resulting conductive paths, interface characteristics, and electrical parameters. Conductive paths were created on four different layers commonly used in photovoltaic systems, including transparent conductive oxide, Cu, Ti, and atomic layer deposition processed Al2O3. The use of high-pressure technology enables the production of conductive layers with strong adhesion to the substrate and precise control of the spatial parameters of conductive paths. Furthermore, the temperature recorded during the deposition process does not exceed 385 K, making this technique suitable for various types of substrates, including glass and silicon. Additionally, the produced layers exhibit low resistance, measuring less than 0.3 Ω. Finally, the mechanical resistance, as determined through tearing tests, as well as environmental and time stability, have been confirmed for the produced paths.
Słowa kluczowe
Rocznik
Strony
179--200
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
  • John Paul II Catholic University of Lublin, Faculty of Natural and Technical Sciences, Konstantynów 1 H, 20-708 Lublin, Poland
  • Research & Development Centre for Photovoltaics, ML System S.A., Zaczernie 190G, 36-062 Zaczernie, Poland
  • John Paul II Catholic University of Lublin, Faculty of Natural and Technical Sciences, Konstantynów 1 H, 20-708 Lublin, Poland
  • Cracow University of Technology, Department of Environmental Technologies, Warszawska 24, 31-155 Cracow, Poland
  • State University of Applied Sciences in Nowy Sącz, Faculty of Engineering Sciences, Zamenhofa 1A, 33-300 Nowy Sącz, Poland
  • Sądeckie Wodociągi sp. z o.o., W. Pola 22, 33-300 Nowy Sącz, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Bouraiou A., Hamouda M., Chaker A., Lachtar S., Neçaibia A., Boutasseta N., Mostefaoui M.: Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment. Energy132(2017), 22–30. doi: 10.1016/j.energy.2017.05.056
  • [2] Sharma V., Sastry O.S., Kumar A., Bora B., Chandel S.S.: Degradation analysis of a-Si, (HIT) hetro-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions. Energy 72(2014), 536–546. doi: 10.1016/j.energy.2014.05.078
  • [3] Ding K., Chen X., Weng S., Liu Y., Zhang J., Li Y., Yang Z.: Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance. Energy 262(2023), 125539. doi: 10.1016/j.energy.2022.125539
  • [4] Paggi M., Berardone I., Infuso A., Corrado M.: Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. Sci. Rep. 4(2014),4506–4512. doi: 10.1038/srep04506
  • [5] Borri C., Gagliardi M., Paggi M.: Fatigue crack growth in Silicon solar cells and hysteretic behaviour of busbars. Sol. Energ. Mat. Sol. C 181(2018), 21–29. doi:10.1016/j.solmat.2018.02.016
  • [6] Infuso A., Corrado M., Paggi M.: Image analysis of polycrystalline solar cells and modelling of intergranular and transgranular cracking. J. Eur. Ceram. Soc. 34(2014), 11, 2713–2722. doi: 10.1016/j.jeurceramsoc.2013.12.051
  • [7] Köntges M., Kunze I., Kajari-Schröder S., Breitenmoser X., Bjørneklett B.: The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energ. Mat. Sol. C 95(2011), 4, 1131–1137. doi: 10.1016/j.solmat.2010.10.034
  • [8] Kaule F., Wang W., Schoenfelder S.: Modeling and testing the mechanical strength of solar cells. Sol. Energ. Mat. Sol. C 120(2014), 441–447. doi: 10.1016/j.solmat. 2013.06.048
  • [9] Taler J., Dzierwa P., Taler D., Harchut P.: Optimization of the boiler start-up taking into account thermal stresses. Energy 92(2015), 160–170. doi: 10.1016/j.energy.2015.03.095
  • [10] Thomas M., Białecka B., Zdebik D.: Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method. Arch. Env. Prot. 43(2017), 4, 39–49. doi: 10.1515/aep-2017-0044
  • [11] Vogt T., Boden S., Andruszkiewicz A., Eckert K., Eckert S., Gerbeth G.: Detection of gas entrainment into liquid metals. Nucl. Eng. Des. 294(2015), 16–23. doi: 10.1016/j.nucengdes.2015.07.072
  • [12] Braun S, Hahn G, Nissler R, Pönisch C, Habermann D.: The multi-busbar design: an overview. Energy Procedia 43(2013), 86–92. doi: 10.1016/j.egypro.2013.11.092
  • [13] Schneider A., Rubin L., Rubin G.: Solar cell efficiency improvement by new metallization techniques – the day4 electrode concept. In: Proc. 2006 IEEE 4th World Conf. on C Photovoltaic Energy Conversion, Waikoloa, 2006, Vol. 1, 1095–1098. doi:10.1109/WCPEC.2006.279333
  • [14] Braun S., Hahn G., Nissler R., Pönisch C., Habermann D.: The Multi-busbar Design: An Overview. Energy Proced. 43(2013), 86–92. doi: 10.1016/j.egypro.2013.11.092
  • [15] Wang B., Jia X., Yang J., Wang Q.: Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber. Energy254(2022), 124463. doi: 10.1016/j.energy.2022.124463
  • [16] Braun S., Hahn G., Nissler R., Pönisch C., Habermann D.: Multi-busbar solar cells and modules: higher efficiencies and low silver consumptions. Energy Proced. 38(2013), 334–339. doi: 10.1016/j.egypro.2013.07.286
  • [17] Haverkamp H., Dastgheib-Shirazi A., Raabe B., Book F., Hahn G.: Minimizing the electrical losses on the front side: development of a selective emitter process from a single diffusion. In: Proc. 33rd IEEE Photovoltaics Specialist Conf. (PVSC), San Diego, 11-16 May 2008, 1(2008), 4. doi: 10.1109/PVSC.2008.4922443
  • [18] Chen C., Pei X., Chen Y., Kang Y.: Investigation, evaluation, and optimization of stray inductance in laminated busbar. IEEE T. Power Electr. 29(2014), 7, 3679–3693.doi: 10.1109/TPEL.2013.2282621
  • [19] Plesca A.: Thermal analysis of busbars from a high current power supply system. Energies 12(2019), 2288. doi: 10.3390/en12122288
  • [20] Smirnova L., Juntunen R., Murashko K., Musikka T., Pyrhönen J.: Thermal analysis of the laminated busbar system of a multilevel converter. IEEE T. Power Electr. 31(2016), 1479–1488. doi: 10.1109/TPEL.2015.2420593
  • [21] Varivodov V.N., Kovalev D.I., Zhulikov S.S., Golubev D.V., Romanov V.A., Mirzabekyan G.Z.: Technological aspects of the use of cast polymer insulation for highvoltage switchgear and busbars. Power Technol Eng. 54(2021), 915–922. doi: 10.1007/s10749-021-01306-2
  • [22] Lu Y., Li G., Akhlaghi Y.G., Xuan Q., Pei G., Ji J., Zhao X.: Effect of grid and optimization on improving the electrical performance of compound parabolic concentrator photovoltaic cells. Sol. Energy 196(2020), 607–615. doi: 10.1016/j.solener.2019.12.065
  • [23] Kyranaki N., Smith A., Yendall K., Hutt D.A., Whalley D.C., Gottschalg R., Betts T.R.: Damp-heat induced degradation in photovoltaic modules manufactured with passivated emitter and rear contact solar cells. Prog. Pchotovoltaics 30(2022), 9, 1061–1071. doi: 10.1002/pip.3556
  • [24] Panda T., Sadhukhan S., Acharyya S., Banerjee P., Nandi A., Bose S., Mondal N., Das G., Maity S., Chaudhuri P., Saha H.: Impact of multi-busbar front grid patterns on the performance of industrial type c-Si solar cel. Sol. Energy 236(2022), 790–801.doi: 10.1016/j.solener.2022.03.051
  • [25] Zhang Z., Zeng Y., Jiang C-S., Huang Y., Liao M., Tong H., Al-Jassim M., Gao P., Shou C., Zhou X., Yan B., Ye J.: Carrier transport through the ultrathin siliconoxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells. Sol. Energ. Mater. Sol. Cell. 187(2018), 113–122. doi: 10.1016/j.solmat.2018.07.025
  • [26] Schneider A., Harney R., Aulehla S., Lemp E., Koch S.: Progress in interconnection of busbar-less solar cells by means of conductive gluing. Energy Proced. 38(2013), 387–394. doi: 10.1016/j.egypro.2013.07.294
  • [27] Park J., Park N.: Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Adv. 4(2014), 34823–34829. doi:10.1039/C4RA03895A
  • [28] Zarmai M.Z., Ekere N.N., Oduoza C.F., Amalu E.H.: A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly. Appl. Energ. 154(2015), 173–182. doi: 10.1016/j.apenergy.2015.04.120
  • [29] Tyagi V.V., Rahim N.A.A., Rahim N.A., Selvaraj J.A.J.: Progress in solar PV technology: Research and achievement. Renew. Sustain. Energ. Rev. 20(2013), 443–461.doi: 10.1016/j.rser.2012.09.028
  • [30] Jung T., Song H., Ahn H., Kang G.: A mathematical model for cell-to-module conversio considering mismatching solar cells and the resistance of the interconnection ribbon. Sol. Energy 103(2014), 253–262. doi: 10.1016/j.solener.2014.01.032
  • [31] Oh W., Jee H., Bae J., Lee J.: Busbar-free electrode patterns of crystalline silicon solar cells for high density shingled photovoltaic module. Sol. Energ. Mater. Sol. Cell.243(2022), 11802. doi: 10.1016/j.solmat.2022.111802
  • [32] Oh W., Park J., Jeong C., Park J., Yi J., Lee J.: Design of a solar cell electrode for a shingled photovoltaic module application. Appl. Surf. Sci. 510(2020), 145420. doi:10.1016/j.apsusc.2020.145420
  • [33] Grätzel M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev.4(2003), 2, 145–153. doi: 10.1016/S1389-5567(03)00026-1
  • [34] O’Regan B., Grätzel M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(1991), 737–740. doi: 10.1038/353737a0
  • [35] Fortunato E., Ginley D., Hosono H., Paine D.C.: Transparent conducting oxides for photovoltaics. MRS Bull. 32(2007), 3, 42–47. doi: 10.1557/mrs2007.29
  • [36] Noh S.I., Ahn H.-J., Riu D.-H.: Photovoltaic property dependence of dye-sensitized solar cells on sheet resistance of FTO substrate deposited via spray pyrolysis. Ceram. Int. 38(2012), 5, 3735–3739. doi: 10.1016/j.ceramint.2012.01.018
  • [37] Kwak D.-J., Moon B.-H., Lee D.-K., Park C.-S., Sung Y.-M.: Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. J. Elec. Eng. Techn. 6(2011)5, 684–687. doi: 10.5370/JEET.2011.6.5.684
  • [38] Daghsen K., Lounissi D., Bouaziz N.: A universal model for solar radiation exergy accounting: Case study of Tunisia. Arch. Thermodyn. 43(2022), 2, 97–118. doi:10.24425/ather.2022.141980
  • [39] Singh J., Guo S., Peters I.M., Aberle A., Walsh T.: Comparison of glass/glass andglass/backsheet PV modules using bifacial silicon solar cells. IEEE J. Photovolt. 5(2015), 99, 783–791. doi: 10.1109/JPHOTOV.2015.2405756
  • [40] Generowicz A., Gronba-Chyła A., Kulczycka J., Harazin P., Gaska K., Ciuła J., Ocłoń P.: Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland). J. Clean. Prod. 382(2023), 135184.doi: 10.1016/j.jclepro.2022.135184
  • [41] Ciuła J., Kowalski S., Wiewiórska I.: Pollution indicator of a megawatt hour produced in cogeneration – the efficiency of biogas purification process as an energy source for wastewater treatment plants. J. Ecol. Eng. 24(2023), 3, 232–245. doi:10.12911/22998993/158562
  • [42] Deng S., Zhang Z., Ju C., Dong J., Xia Z., Yan X., Xu T., Xing G.: Research on hot spot risk for high-efficiency solar module. Energy Proced. 130(2017), 77–86. doi:10.1016/j.egypro.2017.09.399
  • [43] Kim K.A., Krein P.T.: Photovoltaic hot spot analysis for cells with various reversebias characteristics through electrical and thermal simulation. In: Proc. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, 2013, 1–8. doi: 10.1109/COMPEL.2013.6626399
  • [44] Alwaeli M.: Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod. 166(2017), 157–162. doi: 10.1016/j.jclepro.2017.07.203
  • [45] Solheim H.J., Fjær H.G., Srheim E.A., Foss S.E.: Measurement and simulation of hot spots in solar cells. Energy Proced. 38(2013), 183–189. doi: 10.1016/j.egypro.2013.07.266
  • [46] Tomtas P., Skwiot A., Sobiecka E., Obraniak A., Ławińska K., Olejnik T.: Bench tests and CFD simulations of liquid–gas phase separation modeling with simultaneous liquid transport and mechanical foam destruction. Energies 14(2021), 6, 1740. doi:10.3390/en14061740
  • [47] Ocłoń P, Chin H.H, Kozak-Jagieła E., Taler J., Ścisłowicz F., Czamara M.: 33– Photovoltaic–Thermal Waste Heat Integration with Underground Thermal Energy Storage and Heat Pump Systems. Handbook of Process Integration (2nd Edn.). Woodhead, 2023, 1017–1042. doi: 10.1016/B978-0-12-823850-9.00005-0
  • [48] Hadjidj M.S., Bibi-Triki N., Didi F.: Analysis of the reliability of photovoltaicmicrowind based hybrid power system with battery storage for optimized electricity generation at Tlemcen, north west Algeria. Arch. Thermodyn. 40(2019), 1, 161–185. doi: 10.24425/ather.2019.128296
  • [49] Hocine M., Abdessalam O.: Simulation of photovoltaic panel cooling beneath a single nozzle based on a configurations framework. Arch. Thermodyn. 42(2021), 1, 115–128.doi: 10.24425/ather.2020.136950
  • [50] Thomas M., Białecka B., Zdebik D.: Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method. Arch. Environ. Protect. 43(2017), 4, 39–49. doi: 10.1515/aep-2017-0044
  • [51] Vogt T., Boden S., Andruszkiewicz A., Eckert K., Eckert S., Gerbeth G.: Detection of gas entrainment into liquid metals. Nucl. Eng. Des. 294(2015), 16–23. doi:10.1016/j.nucengdes.2015.07.072
  • [52] Bogdanowicz K.A., Augustowski D., Dziedzic J., Kwaśnicki P., Malej W., Iwan A.: Preparation and characterization of novel polymer-based gel electrolyte for dyesensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene) and poly(acrylonitrile-co-butadiene) or poly(dimethylsiloxane) bis(3-aminopropyl). Copolymer. Mater. 13(2020), 12, 2721. doi: 10.3390/ma13122721
  • [53] Abdulghafor I.A., Mnati M.J.: Design of thermoelectric radiant cooling – photovoltaic panels system in the building. Arch. Thermodyn. 43(2022), 4, 85–108. doi:10.24425/ather.2022.144407
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c992d2d-4a58-41a0-9198-857db8a09b3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.