Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Przegląd literatury dotyczący zastosowań Internetu rzeczy
Języki publikacji
Abstrakty
Internet of Things can ensure easy and comfortable life of the human. This present era is mostly digitized and appliances can be operated remotely by human, calling these as smart devices, smart home, smart city etc. This paper is the literature review covering the IoT applications in various fields, sectors such as smart cities and homes, health center, railway system, air pollution in environment, power/energy sector, agriculture, water monitoring for aquaculture,Space-IoT and specifies the advancements in those areas.
Internet Rzeczy może zapewnić człowiekowi łatwe i wygodne życie. Ta obecna era jest w większości zdigitalizowana, a urządzenia mogą być obsługiwane zdalnie przez człowieka, nazywając je inteligentnymi urządzeniami, inteligentnym domem, inteligentnym miastem itp. Niniejszy artykuł jest przeglądem literatury obejmującej zastosowania IoT w różnych dziedzinach, sektorach, takich jak inteligentne miasta i domy, ośrodek zdrowia, sieć kolejowa, zanieczyszczenie powietrza w środowisku, energetyka/energetyka, rolnictwo, monitoring wód dla akwakultury, Space-IoT i określa postęp w tych obszarach.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--56
Opis fizyczny
Bibliogr. 99 poz., rys., tab.
Twórcy
autor
- Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
- Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
- Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India
Bibliografia
- [1] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537- 019-0268-2.
- [2] M. Karabatak, T. Mustafa, and C. Hamaali, “Remote Monitoring Real Time Air pollution - IoT (Cloud Based),” 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020, 2020, doi: 10.1109/ISDFS49300.2020.9116339.
- [3] C. Balasubramaniyan and D. Manivannan, “IoT enabled Air Quality Monitoring System (AQMS) using Raspberry Pi,” Indian J. Sci. Technol., vol. 9, no. 39, 2016, doi: 10.17485/ijst/2016/v9i39/90414.
- [4] S. Dhingra, R. B. Madda, A. H. Gandomi, R. Patan, and M. Daneshmand, “Internet of things mobile-air pollution monitoring system (IoT-Mobair),” IEEE Internet Things J., vol. 6, no. 3, pp. 5577–5584, 2019, doi: 10.1109/JIOT.2019.2903821.
- [5] S. Kusrey, A. Rai, and V. (Nigam) Saxena, “Zigbee Based Air Pollution Monitoring and Control System using WSN,” Int. J. Electron. Commun. Eng., vol. 4, no. 6, pp. 7–11, 2017, doi: 10.14445/23488549/ijece-v4i6p103.
- [6] Vijayakumar Sajjan and P. Sharma, “Research on an Iot Based Air Pollution Monitoring System,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9 Special issue 2, pp. 553–558, 2019, doi: 10.35940/ijitee.I1116.0789S219.
- [7] G. Rout, S. Karuturi, and T. N. Padmini, “Pollution monitoring system using IOT,” ARPN J. Eng. Appl. Sci., vol. 13, no. 6, pp. 2116–2123, 2018, doi: 10.35940/ijeat.b2381.129219.
- [8] S. Kaivonen and E. C. H. Ngai, “Real-time air pollution monitoring with sensors on city bus,” Publ. Serv. by Elsevier B.V Digit. Commun. Networks, vol. 6, no. 1, pp. 23–30, 2020, doi: 10.1016/j.dcan.2019.03.003.
- [9] D. Saha, M. Shinde, and S. Thadeshwar, “IoT based air quality monitoring system using wireless sensors deployed in public bus services,” ACM Int. Conf. Proceeding Ser., 2017, doi: 10.1145/3018896.3025135.
- [10] M. T. Lazarescu, “Design of a WSN platform for long-term environmental monitoring for IoT applications,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, no. 1, pp. 45–54, 2013, doi: 10.1109/JETCAS.2013.2243032.
- [11] A. Sumithra, J. J. Ida, K. Karthika, and S. Gavaskar, “A Smart Environmental Monitoring System Using Internet of Things,” Int. J. Sci. Eng. Appl. Sci., vol. 3, no. 3, pp. 261–265, 2016, [Online]. Available: www.ijseas.com.
- [12] M. Bharathi and Rajasekaran, “Air Quality Monitoring System Using Wireless Sensor Networks,” Int. J. Trend Sci. Res. Dev., vol. Volume-3, no. Issue-1, pp. 922–927, 2018, doi: 10.31142/ijtsrd19035.
- [13] M. Singh, M. Kumari, and P. K. Chauhan, “IOT Based Air Pollution Monitoring System using Arduino & MQ135 Sensor,” Int. Res. J. Eng. Technol., vol. 6, no. 8, pp. 534–537, 2019.
- [14] M. Mehta, P. P. Mohanty, and R. Managlagowri, “Air pollution monitoring using IOT,” Int. J. Adv. Sci. Technol., vol. 29, no. 6, pp. 2690–2696, 2020.
- [15] S. Sharma, N. Soni, and S. Sharma, “Air Pollution Monitoring System using Internet of Things ( IoT ),” Int. Res. J. Eng. Technol., vol. 6, no. 8, pp. 479–484, 2019.
- [16] Z. Shanaz, K. Prem, R. R, R. Kumar, and S. Kumar, “IoT Based Industrial Pollution Monitoring System,” Int. Res. J. Eng. Technol., vol. 6, no. 3, pp. 2038–2041, 2019, doi: 10.1007/978- 981-15-9873-9_28.
- [17] V. O. Matthews, U. S. Idiake, E. Noma-osaghae, and F. Nwukor, “Design and Simulation of a Smart Traffic System in a Campus Community .,” vol. 5, no. 7, pp. 492–497, 2018.
- [18] V. M. Raj, V.Arun, R.M.P Priya, “Air Pollution Monitoring In Urban Area,” Icrtecita-2017, no. October, 2017.
- [19] H. Shah, Z. Khan, ali merchant Abbas, M. Moghal, A. Shaikh, and P. Rane, “IoT Based Air Pollution Monitoring System,” Int. J. Sci. Eng. Res., vol. 9, no. 2, pp. 62–66, 2018.
- [20] M. . Ghewari, T. Mahamuni, P. Kadam, and A. Pawar, “Vehicular pollution monitoring using IoT,” IRJET, vol. 5, no. 2, pp. 1734– 1739, 2018, doi: 10.1109/ICRAIE.2014.6909157.
- [21] A. Chaudhari and G. Kulkarni, “IoT based environmental pollution monitoring system,” Int. Res. J. Eng. Technol., vol. 4, no. 6, pp. 1823–1829, 2017, [Online]. Available: https://www.onlinejournal.in/IJIRV3I4/083.pdf.
- [22] D. N. S. Bhavna, “Smart Home Automation using IoT,” Int. J. Eng. Sci. Res. Technol., vol. 7, no. 5, pp. 435–437, 2018.
- [23] A. Sharma, B. S. Sohi, and S. Chandra, “SN based forest fire detection and early warning system,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 209–214, 2019, doi: 10.35940/ijitee.h6733.078919.
- [24] L. Chettri and R. Bera, “A comprehensive survey on internet of things (IoT) Toward 5G Wireless Systems,” J. Telecommun. Inf. Technol., vol. 2020, no. 4, pp. 27–43, 2020, doi: 10.26636/JTIT.2020.145220.
- [25] S. R. Pokhrel, H. L. Vu, and A. L. Cricenti, “Adaptive Admission Control for IoT Applications in Home WiFi Networks,” IEEE Trans. Mob. Comput., vol. 19, no. 12, pp. 2731–2742, 2020, doi: 10.1109/TMC.2019.2935719.
- [26] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios,” IEEE Access, vol. 8, pp. 23022– 23040, 2020, doi: 10.1109/ACCESS.2020.2970118.
- [27] V. Agarwal, R. A. Patil, and A. B. Patki, “Architectural Considerations for Next Generation IoT Processors,” IEEE Syst. J., vol. 13, no. 3, pp. 2906–2917, 2019, doi: 10.1109/JSYST.2018.2890571.
- [28] M. I. Alhajri, N. T. Ali, and R. M. Shubair, “Classification of Indoor Environments for IoT Applications: A Machine Learning Approach,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 12, pp. 2164–2168, 2018, doi: 10.1109/LAWP.2018.2869548.
- [29] S. R. J. Ramson, D. Bhavanam, S. Draksharam, R. Kumar, D. J. Moni, and A. A. Kirubaraj, “Radio Frequency Identification and Sensor Networks based Bin Level Monitoring Systems-A Review,” Proc. 4th Int. Conf. Devices, Circuits Syst. ICDCS 2018, pp. 17–20, 2019, doi: 10.1109/ICDCSyst.2018.8605153.
- [30] S. R. J. Ramson, V. S, A. Kirubaraj, T. Anagnostopoulos, and A. M. Abu-Mahfouz, “A LoRaWAN IoT enabled Trash Bin Level Monitoring System,” IEEE Trans. Ind. Informatics, pp. 1–10, 2021, doi: 10.1109/tii.2021.3078556.
- [31] S. R. J. Ramson, D. J. Moni, S. Vishnu, T. Anagnostopoulos, A. A. Kirubaraj, and X. Fan, “An IoT-based bin level monitoring system for solid waste management,” J. Mater. Cycles Waste Manag., no. 0123456789, 2020, doi: 10.1007/s10163-020-01137- 9.
- [32] N. Nagpal, “Analyzing Role of Big Data and IoT in Smart Cities,” Int. J. Adv. Eng. Manag. Sci., vol. 3, no. 5, pp. 584–586, 2017, doi: 10.24001/ijaems.3.5.29.
- [33] N. Choudhary, “A Review on IOT-Based Smart Cities,” IRE JOURNALS, vol. 1, no. 10, pp. 202–209, 2018.
- [34] S. Lesanansi, P. Santhiyaa, and M. Vidhya, “Smart City using IOT,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 4, pp. 2619– 2622, 2019, doi: 10.22214/ijraset.2021.33627.
- [35] M. Agaj, G. Borate, P. Gharat, and V. Mhatre, “Smart City using IOT,” IJIRT, vol. 6, no. 12, pp. 382–389, 2020, doi: 10.22214/ijraset.2021.33627.
- [36] I. Jawhar, N. Mohamed, and J. Al-Jaroodi, “Networking architectures and protocols for smart city systems,” Journal of Internet Services and Applications, vol. 9, no. 1. 2018, doi: 10.1186/s13174-018-0097-0.
- [37] R. Deepa, “IoT based Health and Safety System for Manual Scavengers and Miners,” Int. Res. J. Eng. Technol., vol. 7, no. May 2020, pp. 6401–6407, 2020.
- [38] H. Pal, “Internet of Things ( IOT ): A Study Analysis of Applications and Benefits in Health Care Sector,” Int. J. Eng. Res. Technol. ISSN, vol. 8, no. 06, pp. 183–184, 2019.
- [39] H. Zakaria, N. A. Abu Bakar, N. H. Hassan, and S. Yaacob, “IoT security risk management model for secured practice in healthcare environment,” Publ. by Elsevier B.V Procedia Comput. Sci., vol. 161, pp. 1241–1248, 2019, doi: 10.1016/j.procs.2019.11.238.
- [40] P. Chanak and I. Banerjee, “Congestion Free Routing Mechanism for IoT-Enabled Wireless Sensor Networks for Smart Healthcare Applications,” IEEE Trans. Consum. Electron., vol. 66, no. 3, pp. 223–232, 2020, doi: 10.1109/TCE.2020.2987433.
- [41] G. Xu, “IoT-Assisted ECG Monitoring Framework with Secure Data Transmission for Health Care Applications,” IEEE Access, vol. 8, pp. 74586–74594, 2020, doi: 10.1109/ACCESS.2020.2988059.
- [42] S. R. J. Ramson and D. J. Moni, “A case study on different wireless networking technologies for remote health care,” Intell. Decis. Technol., vol. 10, no. 4, pp. 353–364, 2016, doi: 10.3233/IDT-160262.
- [43] M. Akila, S. Ashika, and S. Rubini, “wireless Patient health monitoring using IOT,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 3, pp. 10–15, 2018, doi: 10.4018/978-1-5225-8021-8.ch002.
- [44] V. Srivastav, S. S, V. S, and M. Misty, “IoT Based Health Monitoring System,” IJISRT, vol. 2, no. 12, pp. 255–257, 2017, doi: 10.1109/ICACCS48705.2020.9074192.
- [45] M. Sathya, S. Madhan, and K. Jayanthi, “Internet of things (IoT) based health monitoring system and challenges,” Int. J. Eng. Technol., vol. 7, no. 1.7 Special Issue 7, pp. 175–178, 2018, doi: 10.14419/ijet.v7i1.7.10645.
- [46] P. Valsalan, T. A. B. Baomar, and A. H. O. Baabood, “IoT based health monitoring system,” J. Crit. Rev., vol. 7, no. 4, pp. 739– 743, 2020, doi: 10.31838/jcr.07.04.137.
- [47] S. Pathan, K. Vinay, B. Vishal, P. Dhananjay, and G. Suresh, “IoT Based Health Monitoring System,” IRJET, vol. 7, no. 9, pp. 386– 389, 2020, doi: 10.1109/ICACCS48705.2020.9074192.
- [48] K. H. Kishore, K. V. S. Nath, K. V. N. H. Krishna, D. P. Kumar, V. Manikanta, and F. N. Basha, “Iot based smart health monitoring alert device,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 6, pp. 157–160, 2019.
- [49] H. Wang, Y. Wei, H. Zhu, Y. Liu, C. K. Wu, and K. Fung Tsang, “NB-IoT based tree health monitoring system,” Proc. IEEE Int. Conf. Ind. Technol., vol. 2019-Febru, pp. 1796–1799, 2019, doi: 10.1109/ICIT.2019.8755153.
- [50] S. Vishnu and S. R. Jino Ramson, “An Internet of Things Paradigm: Pandemic Management (incl. COVID-19),” Proc. - Int. Conf. Artif. Intell. Smart Syst. ICAIS 2021, pp. 1371–1375, 2021, doi: 10.1109/ICAIS50930.2021.9395966.
- [51] V. N. Malavade and P. K. Akulwar, “Role of IoT in Agriculture,” IOSR J. Comput. Eng., pp. 56–57, 2016.
- [52] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE Internet Things J., vol. 5, no. 5, pp. 3758–3773, 2018, doi: 10.1109/JIOT.2018.2844296.
- [53] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, doi: 10.1109/ACCESS.2019.2949703.
- [54] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, “IoT connectivity technologies and applications: A survey,” IEEE Access, vol. 8, pp. 67646–67673, 2020, doi: 10.1109/ACCESS.2020.2985932.
- [55] J. C. Zhao, J. F. Zhang, Y. Feng, and J. X. Guo, “The study and application of the IOT technology in agriculture,” Proc. - 2010 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. ICCSIT 2010, vol. 2, pp. 462–465, 2010, doi: 10.1109/ICCSIT.2010.5565120.
- [56] G. Sushanth and S. Sujatha, “IOT Based Smart Agriculture System,” IEEE Xplore 2018 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2018, pp. 2018–2021, 2018, doi: 10.1109/WiSPNET.2018.8538702.
- [57] V. Kumar and R. K. Chawda, “A RESEARCH PAPER ON SMART AGRICULTURE USING IOT,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 3, pp. 530–532, 2020, doi: 10.33564/ijeast.2020.v05i03.088.
- [58] M. Naresh and P. Munaswamy, “Smart agriculture system using IoT technology,” Int. J. Recent Technol. Eng., vol. 7, no. 5, pp. 98–102, 2019.
- [59] J. Doshi, T. Patel, and S. K. Bharti, “Smart Farming using IoT, a solution for optimally monitoring farming conditions,” Procedia Comput. Sci., vol. 160, pp. 746–751, 2019, doi: 10.1016/j.procs.2019.11.016.
- [60] N. Gondchawar and R. S. Kawitkar, “IoT based smart agriculture,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 6, pp. 838–842, 2016, doi: 10.17148/IJARCCE.2016.56188.
- [61] A. P. Atmaja, A. El Hakim, A. P. A. Wibowo, and L. A. Pratama, “Communication Systems of Smart Agriculture Based on Wireless Sensor Networks in IoT,” Journal of Robotics and Control (JRC), vol. 2, no. 4. 2021, doi: 10.18196/jrc.2495.
- [62] P. K. Paul, “Agro Informatics Vis-à-Vis Internet of Things (IoT) Integration & Potentialities—An Analysis,” Agro-Economist- An Int. J., vol. 7, no. 1, pp. 13–20, 2020, doi: 10.30954/2394- 8159.01.2020.2.
- [63] T. A. A. Ali, V. Choksi, and M. B. Potdar, “Precision Agricultural Monitoring Systems Using IoT,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 11, pp. 21796–21800, 2017, doi: 10.15680/IJIRSET.2017.0611125.
- [64] G. Vennila, D. Arivazhagan, and R. Jayavadivel, “An investigation of IOT based smart agriculture,” Int. J. Sci. Technol. Res., vol. 9, no. 1, pp. 2054–2056, 2020.
- [65] K. Preethi, U. Sadhana, and G. U. Sri, “Smart Agriculture on Iot Application,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 7, pp. 51–54, 2020, doi: 10.35940/ijitee.g4901.059720.
- [66] S. H. Rahaman and S. Biswas, “Advantages of Internet of Things (IoT) and It’s Applications in Smart Agriculture System,” Int. Res. J. Adv. Sci. Hub, vol. 2, no. 10, pp. 4–10, 2020, doi: 10.47392/irjash.2020.181.
- [67] K. Asha, K. Mamatha, and A. Patil, “Providing Smart Agricultural solutions to farmers for better yielding using IoT,” IJERT, vol. 4, no. 22, pp. 40–43, 2016, doi: 10.1109/TIAR.2015.7358528.
- [68] S. Ajit Kumar, “Applications of IoT in Agricultural System,” Int. J. Agric. Sci. Food Technol., vol. 6, no. 1, pp. 041–045, 2020, doi: 10.17352/2455-815x.000053.
- [69] A. Swami, A. Patil, and K. Kharade, “Applications of IoT for Smart Agriculture or Farming,” Int. J. Res. Anal. Rev., vol. 6, no. 2, pp. 537–540, 2019.
- [70] S. R. J. Ramson et al., “A Self-Powered, Real-Time, LoRaWAN IoT-based Soil Health Monitoring System,” IEEE Internet Things J., vol. 4662, no. c, pp. 1–16, 2021, doi: 10.1109/JIOT.2021.3056586.
- [71] S. K. Routray and H. M. Hussein, “Satellite Based IoT Networks for Emerging Applications,” IEEE arXiv, 2018.
- [72] D. Hu, L. He, and J. Wu, “A Novel Forward-Link Multiplexed Scheme in Satellite-Based Internet of Things,” IEEE Internet Things J., vol. 5, no. 2, pp. 1265–1274, 2018, doi: 10.1109/JIOT.2018.2799550.
- [73] Z. Qu, G. Zhang, H. Cao, and J. Xie, “LEO Satellite constellation for Internet of Things,” IEEE Access, vol. 5, pp. 18391–18401, 2017, doi: 10.1109/JIOT.2020.3016889.
- [74] A. Mounika and A. Chepuru, “Iot based vehicle tracking and monitoring system using GPS and GSM,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 11, pp. 2399–2403, 2019, doi: 10.35940/ijrte.B1275.0982S1119.
- [75] S. K. Routray, A. Javali, L. Sharma, R. Tengshe, S. Sarkar, and A. D. Ghosh, “satellite based IoT for mission critical applications.” 2019.
- [76] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed, “Internet of things and its applications: A comprehensive survey,” Symmetry / www.mdpi.com/journal/symmetry, vol. 12, no. 10, pp. 1–29, 2020, doi: 10.3390/sym12101674.
- [77] M. Bacco et al., “IoT applications and services in space information networks,” IEEE Wirel. Commun., vol. 26, no. 2, pp. 31–37, 2019, doi: 10.1109/MWC.2019.1800297.
- [78] A. Agarwal, S. Gupta, S. Kumar, and D. Singh, “An efficient use of IoT for satellite data in land cover monitoring to estimate LST and et,” 11th Int. Conf. Ind. Inf. Syst. ICIIS 2016 - Conf. Proc., vol. 2018-Janua, pp. 905–909, 2016, doi: 10.1109/ICIINFS.2016.8263067.
- [79] Y. Zhang, J. Su, and M. Chen, “Research on Adaptive Iterative Learning Control of Air Pressure in Railway Tunnel with IOTs Data,” IEEE Access, vol. 8, pp. 5481–5487, 2020, doi: 10.1109/ACCESS.2019.2960638.
- [80] O. Jo, Y. K. Kim, and J. Kim, “Internet of Things for Smart Railway: Feasibility and Applications,” IEEE Internet Things J., vol. 5, no. 2, pp. 482–490, 2018, doi: 10.1109/JIOT.2017.2749401.
- [81] M. T. Lazarescu and P. Poolad, “Asynchronous Resilient Wireless Sensor Network for Train Integrity Monitoring,” IEEE Internet Things J., vol. XX, no. X, pp. 1–16, 2020, doi: 10.1109/jiot.2020.3026243.
- [82] W. Li and L. Sui, “Design and Application of Large Passenger Flow Warning System for Urban Rail Transit,” Proc. 2018 IEEE 3rd Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2018, no. Iaeac, pp. 192–195, 2018, doi: 10.1109/IAEAC.2018.8577506.
- [83] Y. Sun, H. Qiang, J. Xu, and G. Lin, “Internet of Things-Based Online Condition Monitor and Improved Adaptive Fuzzy Control for a Medium-Low-Speed Maglev Train System,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp. 2629–2639, 2020, doi: 10.1109/TII.2019.2938145.
- [84] G. Bedi, G. K. Venayagamoorthy, R. Singh, R. R. Brooks, and K. C. Wang, “Review of Internet of Things (IoT) in Electric Power and Energy Systems,” IEEE Internet Things J., vol. 5, no. 2, pp. 847–870, 2018, doi: 10.1109/JIOT.2018.2802704.
- [85] K. Harsha, P. Suchitra, and D. Reynolds, “IoT Based Power Consumption Monitoring and Controlling System,” Int. Res. J. Eng. Technol., vol. 5, no. 7, pp. 2211–2218, 2018, [Online]. Available: https://www.mendeley.com/catalogue/iot-based-smartsurveilliance- monitoring-controlling-system/.
- [86] N. Al-Oudat, A. Aljaafreh, M. Saleh, and M. Alaqtash, “Iot-based home and community energy management system in Jordan,” Elsevier Procedia Comput. Sci., vol. 160, no. 2018, pp. 142–148, 2019, doi: 10.1016/j.procs.2019.09.454.
- [87] N. H. Motlagh, M. Mohammadrezaei, J. Hunt, and B. Zakeri, “Internet of things (IoT) and the energy sector,” Energies J., vol. 13, no. 2, pp. 1–27, 2020, doi: 10.3390/en13020494.
- [88] M. P. Bhuvaneswari, M. M. Brundhadevi, M. S. Gayathiredevi, P. Gopitha, and R. Gopalan, “Real Time Power Consumption Monitoring and Control using IoT,” Proc. - 2019 Int. Conf. Futur. Internet Things Cloud, FiCloud 2019, vol. 8, no. 12, pp. 42–45, 2020, doi: 10.1109/FiCloud.2019.00044.
- [89] T. I. Salim, T. Haiyunnisa, and H. S. Alam, “Design and implementation of water quality monitoring for eel fish aquaculture,” 2016 Int. Symp. Electron. Smart Devices, ISESD 2016, pp. 208–213, 2016, doi: 10.1109/ISESD.2016.7886720.
- [90] F. A. Saparudin, T. C. Chee, A. S. Ab Ghafar, H. A. Majid, and N. Katiran, “Wireless water quality monitoring system for high density aquaculture application,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 2, pp. 507–513, 2019, doi: 10.11591/ijeecs.v13.i2.pp507-513.
- [91] T. Abinaya, J. Ishwarya, and M. Maheswari, “A Novel Methodology for Monitoring and Controlling of Water Quality in Aquaculture using Internet of Things (IoT),” 2019 Int. Conf. Comput. Commun. Informatics, ICCCI 2019, 2019, doi: 10.1109/ICCCI.2019.8821988.
- [92] Mohd Saad Hamid, Muhammad Amirul abd Wahab, R. Abdullah, Shamsul Fakhar Bin abd Gani, and Rostam Affendi Hamzah, “Development of water quality monitoring for smart aquaculture system,” J. Eng. Appl. Sci., pp. 2841–2847, 2019.
- [93] L. V. Q. Danh, D. V. M. Dung, T. H. Danh, and N. C. Ngon, “Design and deployment of an IoT-Based water quality monitoring system for aquaculture in mekong delta,” Int. J. Mech. Eng. Robot. Res., vol. 9, no. 8, pp. 1170–1175, 2020, doi: 10.18178/ijmerr.9.8.1170-1175.
- [94] S. R. Jino Ramson, D. Bhavanam, S. Draksharam, A. Kumar, D. Jackuline Moni, and A. Alfred Kirubaraj, “Sensor Networks based Water Quality Monitoring Systems for Intensive Fish Culture -A Review,” Proc. 4th Int. Conf. Devices, Circuits Syst. ICDCS 2018, pp. 54–57, 2019, doi: 10.1109/ICDCSyst.2018.8605146.
- [95] J. Huan, H. Li, F. Wu, and W. Cao, “Design of water quality monitoring system for aquaculture ponds based on NB-IoT,” Aquac. Eng., vol. 90, no. July 2019, pp. 1–10, 2020, doi: 10.1016/j.aquaeng.2020.102088.
- [96] X. Wang, Y. Feng, J. Sun, D. Li, and H. Yang, “Research on Fishery Water Quality Monitoring System Based on 6LoWPAN,” J. Phys. Conf. Ser., vol. 1624, no. 4, 2020, doi: 10.1088/1742- 6596/1624/4/042057.
- [97] M. M. Billah, Z. M. Yusof, K. Kadir, A. M. M. Ali, and I. Ahmad, “Quality Maintenance of Fish Farm: Development of Real-time Water Quality Monitoring System,” 2019 IEEE 6th Int. Conf. Smart Instrumentation, Meas. Appl. ICSIMA 2019, no. August, pp. 27–29, 2019, doi: 10.1109/ICSIMA47653.2019.9057294.
- [98] H. P. Luo, G. L. Li, W. F. Peng, J. Song, and Q. W. Bai, “Realtime remote monitoring system for aquaculture water quality,” Int. J. Agric. Biol. Eng., vol. 8, no. 6, pp. 136–143, 2015, doi: 10.3965/j.ijabe.20150806.1486.
- [99] P. O. Orobator, T. M. Akiri-Obaroakpo, and R. Orowa, “Water quality evaluation from selected aquaculture ponds in Benin City, Nigeria,” J. Res. For. Wildl. Environ., vol. 12, no. 1, pp. 24–33, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c95562d-920b-4803-967b-1a51dfb37c9e