PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure Analysis of Thin-Walled Composite Profile Subjected to Axial Compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a numerical and experimental study investigating the load carrying capacity of thin-walled composite structure subjected to axial compression. Composite profile was made of carbon-epoxy laminate with symmetrical arrangement of the layers [90/-45/45/0]s. The experiment was performed on a universal testing machine (Zwick Z100) until total failure of the column. In case of experimental study, post-critical equilibrium paths in full range of loads of the structure were determined. The numerical analysis was performed by the finite element method using the Abaqus® software. Numerical analysis involved solving a nonlinear stability problem. The geometrically non-linear problem was solved by the Newton-Raphson method. The load carrying capacity of the composite structure was determined by the progressive failure analysis, which firstly estimates damage initiation load (Hashin criterion) and secondly estimates failure load (energy criterion). The numerical and experimental results show high agreement, which confirms the adequacy of the prepared numerical model of composite profile.
Twórcy
  • Department of Machine Design and Mechatronics, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Królak M., Stateczność. stany zakrytyczne i nośność cienkościennych konstrukcji o ortotropowych ścianach płaskich, Wyd. Politechniki Łódzkiej, seria Monografie, 1995.
  • 2. German J., Podstawy mechaniki kompozytów włóknistych. Politechnika Krakowska, Kraków, 2001.
  • 3. Rozylo P., Debski H., Kral J., Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression, AIP Conference Proceedings 2018, 1922, 080001.
  • 4. Debski H., Rozylo P., Gliszczynski A.: Effect of low-velocity impact damage location on the stability and post-critical state of composite columns under compression. Composite Structures 2018, 184, 883–893.
  • 5. Ribeiro M.L., Vandepitte D., Tita V., Damage model and progressive failure analyses for filament wound composite laminates, Appl Compos Mater 2013, 20, 975–92.
  • 6. Rozylo P., Optimization of I-section profile design by the finite element method, Advances in Science and Technology Research Journal, 2016, 10(29), 52–56.
  • 7. Rozylo P., Teter A., Debski H., Wysmulski P., Falkowicz K., Experimental and numerical study of the buckling of composite profiles with open cross section under axial compression, Applied Composite Materials 2017, 24, 1251–1264.
  • 8. Rozylo P., Experimental-numerical test of open section composite columns stability subjected to axial compression, Archives of Materials Science and Engineering 2017, 84(2), 58-64.
  • 9. Rozylo P., Lukasik D.: Numerical analysis of the critical state of thin-walled structure with z-profile cross section. Advances in Science and Technology Research Journal 2017, 11(1),194–200.
  • 10. Rozylo P., Debski H., Kubiak T.: A model of low-velocity impact damage of composite plates subjected to Compression-After-Impact (CAI) testing. Composite Structures 2017, 181, 158–170.
  • 11. Calzada K.A., Kapoor S.G., DeVor R.E., Samuel J., Srivastava A.K., Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced polymer composites, Journal of Manufacturing Processes 2012, 14, 141–149.
  • 12. Kubiak T., Samborski S., Teter A., Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method, Composite Structures 2015, 133, 921-929.
  • 13. Gliszczynski A., Kubiak T., Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression, Composite Structures 2017, 169, 52-61.
  • 14. Wang L., Zheng C., Luo H., Wei S., Wei Z., Continuum damage modelling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel, Composite Structures 2015, 134, 475-482.
  • 15. Liu P.F., Zheng J.Y., Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics, Mater Sci Eng A 2008, 485, 711–717.
  • 16. Tonatto M.L.P., Forte M.M.C., Tita V., Amico S.C., Progressive damage modelling of spiral and ring composite structures for offloading hoses, Mater Des 2016, 108, 374–82.
  • 17. Lemaitre J., Plumtree A., Application of damage concepts to predict creep fatigue failures, J Eng Mater Technol 1979, 101(3), 284–92.
  • 18. Iannucci L., Ankersen J., An energy based damage model for thin laminated composites, Compos Sci Technol 2006, 66, 934–51.
  • 19. Li W., Cai H., Li Ch., Wang K., Fang L., Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics, Adv Compos Mater 2014, 23(5–6), 477–90.
  • 20. Hashin Z., Rotem A., A fatigue failure criterion for fibre reinforced materials, J Compos Mater 1973, 7, 448–64.
  • 21. Hashin Z., Failure criteria for unidirectional fibre composites, J Appl Mech 1980, 47, 329–34.
  • 22. Kachanov L.M., On the time to failure under creep conditions, Izv AN, Otd Tekhn 1958, 8, 26–31.
  • 23. Camanho P.P., Maimí P., Dávila C.G., Prediction of size effects in notched laminates using continuum damage mechanics, Compos Sci Technol 2007, 67(13), 2715–27.
  • 24. Camanho P.P., Matthews F.L., A progressive damage model for mechanically fastened joints in composite laminates, J Comp Mater 1999, 33, 2248–80.
  • 25. Matzenmiller A., Lubliner J., Taylor LR., A constitutive model for anisotropic damage in fiber composites, Mech Mater 1995, 20, 125–52.
  • 26. Lapczyk I., Hurtado J.A., Progressive damage modeling in fiber-reinforced materials, Composites Part A 2007, 38, 2333-2341.
  • 27. Jones R.M., Buckling of bars, plates and shells. Bull Ridge Publishing, Blacksburg, Virginia, 2006, 308-319.
  • 28. Paszkiewicz M., Kubiak T., Selected problems concerning determination of the buckling load of channel section beams and columns, Thin-Walled Structures 2015, 93, 112-121.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c8fdf1a-a90f-454d-9abb-2d85e398f6fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.